Context: Aromatic L-amino acid decarboxylase (AADC) is target of autoantibodies in autoimmune polyendocrine syndrome I (APS I), especially in patients with autoimmune hepatitis. Little information is currently available on AADC autoantibody epitopes and on the interrelation between autoantibody-mediated inhibition of enzymatic activity and epitope specificity. Design: We tested the immunoreactivity of full-length porcine AADC and of eight fragments of the enzyme with human serum from 18 patients with APS I, 199 with non-APS I autoimmune Addison's disease, 124 with type 1 diabetes mellitus, 36 with Graves' disease, and 141 healthy control subjects, and we evaluated the autoantibody-mediated enzymatic inhibition. Results: AADC antibodies (Ab) were detected in 12 of 18 (67%) APS I patients and in six of 199 (3%) autoimmune Addison's disease patients. Four patients with autoimmune hepatitis were all positive for AADCAb. None of the 141 healthy control subjects, 82 patients with nonautoimmune adrenal insufficiency, 124 with type 1 diabetes mellitus, and 36 with Graves' disease were found positive. Two epitope regions, corresponding to amino acids 274-299 (E1) and 380-471 (E2) were identified. Localization of E1 was confirmed by displacement studies with synthetic peptides corresponding to peptides of porcine AADC. All 12 AADCAb-positive APS I sera reacted with E1, and seven of 12 (58%) reacted also with E2. E2-specific, but not E1-specific, autoantibodies were associated with a significant inhibition of in vitro AADC enzymatic activity. Conclusions: We mapped the human AADCAb epitopes to the middle and COOH-terminal regions of the enzyme. Autoantibodies to the COOH-terminal region induce a significant inhibition of enzymatic activity.
Mapping of human autoantibody epitopes on aromatic L-amino acid decarboxylase
FALORNI, Alberto
2007
Abstract
Context: Aromatic L-amino acid decarboxylase (AADC) is target of autoantibodies in autoimmune polyendocrine syndrome I (APS I), especially in patients with autoimmune hepatitis. Little information is currently available on AADC autoantibody epitopes and on the interrelation between autoantibody-mediated inhibition of enzymatic activity and epitope specificity. Design: We tested the immunoreactivity of full-length porcine AADC and of eight fragments of the enzyme with human serum from 18 patients with APS I, 199 with non-APS I autoimmune Addison's disease, 124 with type 1 diabetes mellitus, 36 with Graves' disease, and 141 healthy control subjects, and we evaluated the autoantibody-mediated enzymatic inhibition. Results: AADC antibodies (Ab) were detected in 12 of 18 (67%) APS I patients and in six of 199 (3%) autoimmune Addison's disease patients. Four patients with autoimmune hepatitis were all positive for AADCAb. None of the 141 healthy control subjects, 82 patients with nonautoimmune adrenal insufficiency, 124 with type 1 diabetes mellitus, and 36 with Graves' disease were found positive. Two epitope regions, corresponding to amino acids 274-299 (E1) and 380-471 (E2) were identified. Localization of E1 was confirmed by displacement studies with synthetic peptides corresponding to peptides of porcine AADC. All 12 AADCAb-positive APS I sera reacted with E1, and seven of 12 (58%) reacted also with E2. E2-specific, but not E1-specific, autoantibodies were associated with a significant inhibition of in vitro AADC enzymatic activity. Conclusions: We mapped the human AADCAb epitopes to the middle and COOH-terminal regions of the enzyme. Autoantibodies to the COOH-terminal region induce a significant inhibition of enzymatic activity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.