The coccidium Cryptosporidium parvum is an obligate intracellular parasite of the phylum Apicomplexa. It infects the gastrointestinal tract of humans and livestock, and represents the third major cause of diarrhoeal disease worldwide. Scarcely considered for decades due to its apparently non-pathogenic nature, C. parvum has been studied very actively over the last 15 years, after its medical relevance as a dangerous opportunistic parasite and widespread water contaminant was fully recognised. Despite the lack of an efficient in vitro culture system and appropriate animal models, significant advances have been made in this relatively short period of time towards understanding C. parvum biology, immunology, genetics and epidemiology. Until recently, very little was known about the genome of C. parvum, with even basic issues, such as the number and size of chromosomes, being the object of a certain controversy. With the advent of pulsed field gradient electrophoresis and the introduction of molecular biology techniques, the overall structure and fine organisation of the genome of C. parvum have started to be disclosed. Organised into eight chromosomes distributed in a very narrow range of molecular masses, the genome of C. parvum is one of the smallest so far described among unicellular eukaryotic organisms. Although fewer than 30 C. parvum genes have been cloned so far, information about the overall structure of the parasite genome has increased exponentially over the last 2 years. From the first karyotypic analyses to the recent development of physical maps for individual chromosomes, this review will try to describe the state-of-the-art of our knowledge on the nuclear genome of C. parvum and will discuss the available experimental evidence concerning the presence of extra-chromosomal elements.

Cryptosporidium parvum: the many secrets of a small genome.

CRISANTI, Andrea
2000

Abstract

The coccidium Cryptosporidium parvum is an obligate intracellular parasite of the phylum Apicomplexa. It infects the gastrointestinal tract of humans and livestock, and represents the third major cause of diarrhoeal disease worldwide. Scarcely considered for decades due to its apparently non-pathogenic nature, C. parvum has been studied very actively over the last 15 years, after its medical relevance as a dangerous opportunistic parasite and widespread water contaminant was fully recognised. Despite the lack of an efficient in vitro culture system and appropriate animal models, significant advances have been made in this relatively short period of time towards understanding C. parvum biology, immunology, genetics and epidemiology. Until recently, very little was known about the genome of C. parvum, with even basic issues, such as the number and size of chromosomes, being the object of a certain controversy. With the advent of pulsed field gradient electrophoresis and the introduction of molecular biology techniques, the overall structure and fine organisation of the genome of C. parvum have started to be disclosed. Organised into eight chromosomes distributed in a very narrow range of molecular masses, the genome of C. parvum is one of the smallest so far described among unicellular eukaryotic organisms. Although fewer than 30 C. parvum genes have been cloned so far, information about the overall structure of the parasite genome has increased exponentially over the last 2 years. From the first karyotypic analyses to the recent development of physical maps for individual chromosomes, this review will try to describe the state-of-the-art of our knowledge on the nuclear genome of C. parvum and will discuss the available experimental evidence concerning the presence of extra-chromosomal elements.
2000
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/162934
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact