RET/PTC rearrangements represent key genetic events involved in papillary thyroid carcinoma (PTC) initiation. The aim of the present study was to identify the early changes in gene expression induced by RET/PTC in thyroid cells. For this purpose, microarray analysis was conducted on PCCL3 cells conditionally expressing the RET/PTC3 oncogene. Gene expression profiling 48 h after activation of RET/PTC3 identified a statistically significant modification of expression of 270 genes. Quantitative PCR confirmation of 20 of these demonstrated 90% accuracy of the microarray. Functional clustering of genes with greater than or less than 1.75-fold expression change (86 genes) revealed RET/PTC3-induced regulation of genes with key functions in apoptosis (Ripk3, Tdga), cell-cell signaling (Cdh6, Fn1), cell cycle (Il24), immune and inflammation response (Cxcl10, Scya2, Il6, Gbp2, Oas1, Tap1, RT1Aw2, C2ta, Irf1, Lmp2, Psme2, Prkr), metabolism (Aldob, Ptges, Nd2, Gss, Gstt1), signal transduction (Socs3, Nf1, Jak2, Cpg21, Dusp6, Socs1, Stat1, Stat3, Cish) and transcription (Nr4a1, Junb, Hfh1, Runx1, Foxe1). Genes coding for proteins involved in the immune response and in intracellular signal transduction pathways activated by cytokines and chemokines were strongly represented, indicating a critical role of RET/PTC3 in the early modulation of the immune response.
RET/PTC-induced gene expression in thyroid PCCL3 cells reveals early activation of genes involved in regulation of the immune response
PUXEDDU, Efisio;MORETTI, Sonia;
2005
Abstract
RET/PTC rearrangements represent key genetic events involved in papillary thyroid carcinoma (PTC) initiation. The aim of the present study was to identify the early changes in gene expression induced by RET/PTC in thyroid cells. For this purpose, microarray analysis was conducted on PCCL3 cells conditionally expressing the RET/PTC3 oncogene. Gene expression profiling 48 h after activation of RET/PTC3 identified a statistically significant modification of expression of 270 genes. Quantitative PCR confirmation of 20 of these demonstrated 90% accuracy of the microarray. Functional clustering of genes with greater than or less than 1.75-fold expression change (86 genes) revealed RET/PTC3-induced regulation of genes with key functions in apoptosis (Ripk3, Tdga), cell-cell signaling (Cdh6, Fn1), cell cycle (Il24), immune and inflammation response (Cxcl10, Scya2, Il6, Gbp2, Oas1, Tap1, RT1Aw2, C2ta, Irf1, Lmp2, Psme2, Prkr), metabolism (Aldob, Ptges, Nd2, Gss, Gstt1), signal transduction (Socs3, Nf1, Jak2, Cpg21, Dusp6, Socs1, Stat1, Stat3, Cish) and transcription (Nr4a1, Junb, Hfh1, Runx1, Foxe1). Genes coding for proteins involved in the immune response and in intracellular signal transduction pathways activated by cytokines and chemokines were strongly represented, indicating a critical role of RET/PTC3 in the early modulation of the immune response.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.