Through elastic neutron scattering we investigated the fast dynamics of lysozyme in hydrated powder form or embedded in glycerol-water and glucose-water matrices. We calculated the relaxational contribution to the mean square displacements of protein hydrogen atoms. We found that the inverse of this quantity is linearly proportional to the logarithm of the viscosity of the solvent glassy matrix. This relationship suggests a close connection between the picosecond-time-scale dynamics of protein side chains and the solvent structural relaxation.
Picosecond-Time-Scale Fluctuations of Proteins in Glassy Matrices: The Role of Viscosity
ONORI, Giuseppe;PACIARONI, ALESSANDRO
2005
Abstract
Through elastic neutron scattering we investigated the fast dynamics of lysozyme in hydrated powder form or embedded in glycerol-water and glucose-water matrices. We calculated the relaxational contribution to the mean square displacements of protein hydrogen atoms. We found that the inverse of this quantity is linearly proportional to the logarithm of the viscosity of the solvent glassy matrix. This relationship suggests a close connection between the picosecond-time-scale dynamics of protein side chains and the solvent structural relaxation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.