Magnetization dynamics of dipolarly coupled nanowire arrays has been studied by Brillouin light scattering. Measurements performed in uniformly magnetized wires as a function of the transferred wave vector demonstrated the existence of several discrete collective modes, propagating through the structure with a periodic dispersion curve encompassing several Brillouin zones relative to the artificial spatial periodicity. This experimental evidence has been quantitatively explained by a theoretical model which permits the calculation of the dispersion relation for collective modes in patterned arrays through the numerical solution of an eigenvalue problem for an integral operator.
Collective spin modes in monodimensional magnonic crystal consisting of dipolarly coupled nanowires
CARLOTTI, Giovanni;
2007
Abstract
Magnetization dynamics of dipolarly coupled nanowire arrays has been studied by Brillouin light scattering. Measurements performed in uniformly magnetized wires as a function of the transferred wave vector demonstrated the existence of several discrete collective modes, propagating through the structure with a periodic dispersion curve encompassing several Brillouin zones relative to the artificial spatial periodicity. This experimental evidence has been quantitatively explained by a theoretical model which permits the calculation of the dispersion relation for collective modes in patterned arrays through the numerical solution of an eigenvalue problem for an integral operator.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.