Since occupational and environmental exposure to the heavy metal Cadmium (Cd) affects human health this study investigated the effects of exposure to a single, or multiple, sub-toxic Cd concentrations on sub-confluent and confluent human osteoblast growth and expression of specific bone differentiation markers. RT-PCR quantified gene expression of type I collagen, metalloprotease (MMP13), runt-related transcription factor-2 (RUNX2), osterix, osteocalcin, osteonectin, alkaline phosphatase, integrins and bone sialoprotein (BSP). Expression of fibroblast growth factors 1 and 2 (FGF1, FGF2), transforming growth factor-beta(3) (TGFbeta(3)) and bone morphogenetic protein-2 (BMP2) were also evaluated to determine whether Cd-related effects were mediated by an imbalance in expression. Depending on osteoblast concentration and maturation stages, Cd inhibited or stimulated cell growth, decreased type I collagen, increased MMP13, FGF1 and BMP2 gene expression and stimulated the mineralization process only in continuously exposed cultures. These results suggest that in vivo, acute or chronic exposure to sub-toxic Cd concentrations may affect bone formation differently and support the hypothesis that Cd-induced bone disorders may involve downstream changes in growth factor expression. The results are of interest in forensic and occupational medicine in establishing preventive measures to reduce professional exposure risks.

Effects of sub-toxic cadmium concentrations of bone gene expression program: results of an in vitro study

BODO, Maria
;
BALLONI, Stefania;LUMARE, ELEONORA;BACCI, Mauro;CALVITTI, Mario;DELL'OMO, Marco;MURGIA, Nicola;MARINUCCI, Lorella
2010

Abstract

Since occupational and environmental exposure to the heavy metal Cadmium (Cd) affects human health this study investigated the effects of exposure to a single, or multiple, sub-toxic Cd concentrations on sub-confluent and confluent human osteoblast growth and expression of specific bone differentiation markers. RT-PCR quantified gene expression of type I collagen, metalloprotease (MMP13), runt-related transcription factor-2 (RUNX2), osterix, osteocalcin, osteonectin, alkaline phosphatase, integrins and bone sialoprotein (BSP). Expression of fibroblast growth factors 1 and 2 (FGF1, FGF2), transforming growth factor-beta(3) (TGFbeta(3)) and bone morphogenetic protein-2 (BMP2) were also evaluated to determine whether Cd-related effects were mediated by an imbalance in expression. Depending on osteoblast concentration and maturation stages, Cd inhibited or stimulated cell growth, decreased type I collagen, increased MMP13, FGF1 and BMP2 gene expression and stimulated the mineralization process only in continuously exposed cultures. These results suggest that in vivo, acute or chronic exposure to sub-toxic Cd concentrations may affect bone formation differently and support the hypothesis that Cd-induced bone disorders may involve downstream changes in growth factor expression. The results are of interest in forensic and occupational medicine in establishing preventive measures to reduce professional exposure risks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/166767
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact