Four stratigraphic sections belonging to Lagonegro succession (Southern Apennines) at Mt. S. Enoc, Pignola-Abriola, Sasso di Castalda and Mt Volturino have been studied in detail under to provide a new micro-palaeontological data set based on conodonts and radiolarians for the characterization of the Norian ⁄Rhaetian interval. The studied sections represent the different settings of the Lagonegro Basin (from proximal to distal facies) and permit a detailed, integrated, biostratigraphy of the Calcari con Selce (cherty limestones) and Scisti Silicei formations (bedded cherts with radiolarians) to be drawn up. The upper portion of the Calcari con Selce Formation, exhibits intermediate characteristics between the Calcari con Selce and Scisti Silicei Formation, in particular the progressive decrease in carbonate content against an increase in shales and cherts. Within the four sections studied, the Norian ⁄Rhaetian interval has been documented both with conodonts and radiolarians. Because of the continuity and the absence of condensed facies, it has been possible to recognize the morphocline between species Misikella hernsteini and Misikella posthernsteini, here represented by all the transitional forms characterized by common features between the two species, gathered in three evolutionary steps. Moreover, the morphocline between M. hernsteini and M. posthernsteini has been involved in the definition of the Norian ⁄ Rhaetian Boundary, recognizing thus the FAD of M. posthernsteini, one of the possible biomarkers proposed for the boundary. The rich, well-preserved, radiolarian associations of Pignola-Abriola, Sasso di Castalda and Mt. Volturino permit the correlation of Tethyan and American conodont successions, highlighting the importance of the mostly coincident occurrences of M. posthernsteini and Epigondolella mosheri morphotype A, which correspond to the base of Proparvicingula moniliformis A. Z. and the disappearance of bivalve Monotis. These coincident bioevents are used here to define the base of the Rhaetian stage.
New biostratigraphical constraints for the Norian⁄Rhaetian boundary: data from Lagonegro Basin, Southern Apennines, Italy
GIORDANO, Nicola;CIARAPICA, Gloria;BERTINELLI, Angela
2010
Abstract
Four stratigraphic sections belonging to Lagonegro succession (Southern Apennines) at Mt. S. Enoc, Pignola-Abriola, Sasso di Castalda and Mt Volturino have been studied in detail under to provide a new micro-palaeontological data set based on conodonts and radiolarians for the characterization of the Norian ⁄Rhaetian interval. The studied sections represent the different settings of the Lagonegro Basin (from proximal to distal facies) and permit a detailed, integrated, biostratigraphy of the Calcari con Selce (cherty limestones) and Scisti Silicei formations (bedded cherts with radiolarians) to be drawn up. The upper portion of the Calcari con Selce Formation, exhibits intermediate characteristics between the Calcari con Selce and Scisti Silicei Formation, in particular the progressive decrease in carbonate content against an increase in shales and cherts. Within the four sections studied, the Norian ⁄Rhaetian interval has been documented both with conodonts and radiolarians. Because of the continuity and the absence of condensed facies, it has been possible to recognize the morphocline between species Misikella hernsteini and Misikella posthernsteini, here represented by all the transitional forms characterized by common features between the two species, gathered in three evolutionary steps. Moreover, the morphocline between M. hernsteini and M. posthernsteini has been involved in the definition of the Norian ⁄ Rhaetian Boundary, recognizing thus the FAD of M. posthernsteini, one of the possible biomarkers proposed for the boundary. The rich, well-preserved, radiolarian associations of Pignola-Abriola, Sasso di Castalda and Mt. Volturino permit the correlation of Tethyan and American conodont successions, highlighting the importance of the mostly coincident occurrences of M. posthernsteini and Epigondolella mosheri morphotype A, which correspond to the base of Proparvicingula moniliformis A. Z. and the disappearance of bivalve Monotis. These coincident bioevents are used here to define the base of the Rhaetian stage.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.