The economically sustainable availability of biomass residuals and the growing need to reduce carbon dioxide emissions from power generation facilities has driven the development of a series of processes that lead to the production of a variety of biomass-derived fuels gaseous fuels, such as syngas, pyrolysis gas, landfill gas and digester gas. These technologies can find an ideal coupling when used for fuelling micro gas turbines, especially for distributed power generation applications, in a range between 50 and 500 kWE. This paper features a report on numerical activity carried out at the University of Perugia on a 80 kWE micro gas turbine annular combustion chamber, featuring RQL technology, that has been numerically modeled in order to verify combustion requirements, principally in terms of air/fuel ratio and lower heating value, simulating mixtures with varying chemical composition. The use of CFD turbulence and combustion modeling, via both Eddy Break-up and non-adiabatic PPDF methods, allows us to evaluate flame temperatures and stability, NOx and unburnt hydrocarbons emissions, under various load conditions, for the different fuel mixtures taken into account.
"Numerical analysis of biomass-derived gaseous fuels fired in a RQL micro gas turbine combustion chamber - Preliminary results."
LARANCI, PAOLO;FANTOZZI, Francesco
2011
Abstract
The economically sustainable availability of biomass residuals and the growing need to reduce carbon dioxide emissions from power generation facilities has driven the development of a series of processes that lead to the production of a variety of biomass-derived fuels gaseous fuels, such as syngas, pyrolysis gas, landfill gas and digester gas. These technologies can find an ideal coupling when used for fuelling micro gas turbines, especially for distributed power generation applications, in a range between 50 and 500 kWE. This paper features a report on numerical activity carried out at the University of Perugia on a 80 kWE micro gas turbine annular combustion chamber, featuring RQL technology, that has been numerically modeled in order to verify combustion requirements, principally in terms of air/fuel ratio and lower heating value, simulating mixtures with varying chemical composition. The use of CFD turbulence and combustion modeling, via both Eddy Break-up and non-adiabatic PPDF methods, allows us to evaluate flame temperatures and stability, NOx and unburnt hydrocarbons emissions, under various load conditions, for the different fuel mixtures taken into account.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.