The excited state deactivation pathways of push-pull distyryl furan and benzofuran derivatives in several organic solvents were investigated in detail by using time-resolved transient absorption and fluorescence spectroscopies, with nano-and femto-second time resolution. Solvent polarity was found to play a key role in determining the efficiencies of fluorescence, intersystem crossing and internal conversion. The triplet yield gradually decreased, while the internal conversion increased upon increasing the solvent dielectric constant. However the fluorescence showed a different solvent polarity effect in the low and high solvent polarity region, with a reversal of the trend of fluorescence properties (quantum yield and lifetime). This fact points to an emitting state of a different nature (smaller and larger dipole moments) in the two cases, as also suggested by the huge fluorosolvatochromism. In fact the ultrafast spectroscopic investigation evidenced the presence of two transients characterized by peculiar spectral shapes assigned to a locally excited (LE) and a charge transfer (CT) state. In the more polar solvents the CT state was the longer lived, fluorescent one and an intramolecular charge transfer process was found to be operative and to become faster (up to similar to 200-250 fs) in the higher polarity media. On the contrary, distyrylfuran, which exhibits the same molecular skeleton without the push-pull character showed a similar excited state dynamics in solvents of different polarities.

Ultrafast photoinduced intramolecular charge transfer in push–pulldistyryl furan and benzofuran: solvent and molecular structure effect

CARLOTTI, BENEDETTA;SPALLETTI, Anna;ELISEI, Fausto
2011

Abstract

The excited state deactivation pathways of push-pull distyryl furan and benzofuran derivatives in several organic solvents were investigated in detail by using time-resolved transient absorption and fluorescence spectroscopies, with nano-and femto-second time resolution. Solvent polarity was found to play a key role in determining the efficiencies of fluorescence, intersystem crossing and internal conversion. The triplet yield gradually decreased, while the internal conversion increased upon increasing the solvent dielectric constant. However the fluorescence showed a different solvent polarity effect in the low and high solvent polarity region, with a reversal of the trend of fluorescence properties (quantum yield and lifetime). This fact points to an emitting state of a different nature (smaller and larger dipole moments) in the two cases, as also suggested by the huge fluorosolvatochromism. In fact the ultrafast spectroscopic investigation evidenced the presence of two transients characterized by peculiar spectral shapes assigned to a locally excited (LE) and a charge transfer (CT) state. In the more polar solvents the CT state was the longer lived, fluorescent one and an intramolecular charge transfer process was found to be operative and to become faster (up to similar to 200-250 fs) in the higher polarity media. On the contrary, distyrylfuran, which exhibits the same molecular skeleton without the push-pull character showed a similar excited state dynamics in solvents of different polarities.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/176987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact