In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type $x'(t) \in F(t,x(t)) + G(t,x(t))$. Our existence theorems improve a result due to Hristova-Bainov, since for us the single valued map f is not necessarily continuous on [0; T] but only continuous with respect to the second variable. Moreover, we do not require a Lipschitz condition on f.

On the existence of solutions for non linear impulsive periodic viable problems

CARDINALI, Tiziana;
2004

Abstract

In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type $x'(t) \in F(t,x(t)) + G(t,x(t))$. Our existence theorems improve a result due to Hristova-Bainov, since for us the single valued map f is not necessarily continuous on [0; T] but only continuous with respect to the second variable. Moreover, we do not require a Lipschitz condition on f.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/20512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact