We establish that there are exactly 500 KTS(33)s admitting an automorphism group fixing one point and acting regularly on the remainder; 436 are over the cyclic group while 64 are over the dicyclic group. There are exactly 243 nonisomorphic STS(33)s underlying the above KTS(33)s; 211 are over the cyclic group while 32 are over the dicyclic group. This gives a significant improvement on the number of known KTS(33)s (at least 528 instead of at least 28).
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | The 1-rotational Kirkman triple systems of order 33 |
Autori: | |
Data di pubblicazione: | 2000 |
Rivista: | |
Abstract: | We establish that there are exactly 500 KTS(33)s admitting an automorphism group fixing one point... and acting regularly on the remainder; 436 are over the cyclic group while 64 are over the dicyclic group. There are exactly 243 nonisomorphic STS(33)s underlying the above KTS(33)s; 211 are over the cyclic group while 32 are over the dicyclic group. This gives a significant improvement on the number of known KTS(33)s (at least 528 instead of at least 28). |
Handle: | http://hdl.handle.net/11391/22770 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.