We give a constructive and very simple proof of a theorem by P. L. Check and C. J. Colbourn [Discrete Math. 133 (1994), no. 1-3, 285--289] stating the existence of a cyclic $(4p,4,1)$-BIBD (i.e. regular over $Z_{4p}$) for any prime $p\equiv13\pmod{24}$. We extend the theorem to primes $p\equiv1\pmod{24}$, although in this case the construction is not explicit. Anyway, for all these primes $p$, we explicitly construct a regular $(4p,4,1)$-BIBD over $Z_2^2\oplus Z_p$.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Some regular Steiner 2-designs with block size 4 |
Autori: | |
Data di pubblicazione: | 2000 |
Rivista: | |
Abstract: | We give a constructive and very simple proof of a theorem by P. L. Check and C. J. Colbourn [Disc...rete Math. 133 (1994), no. 1-3, 285--289] stating the existence of a cyclic $(4p,4,1)$-BIBD (i.e. regular over $Z_{4p}$) for any prime $p\equiv13\pmod{24}$. We extend the theorem to primes $p\equiv1\pmod{24}$, although in this case the construction is not explicit. Anyway, for all these primes $p$, we explicitly construct a regular $(4p,4,1)$-BIBD over $Z_2^2\oplus Z_p$. |
Handle: | http://hdl.handle.net/11391/22773 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.