In modeling blood-brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists.

A Novel Approach for Predicting P-Glycoprotein (ABCB1) Inhibition Using Molecular Interaction Fields

BROCCATELLI, FABIO;CAROSATI, Emanuele;GORACCI, LAURA;CRUCIANI, Gabriele
2011

Abstract

In modeling blood-brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/246489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 126
social impact