In safety critical applications, control architectures based on adaptive neural networks (NNs) must satisfy strict design specifications. This paper presents a practical approach for designing a mixed linear/adaptive model reference controller that recovers the performance of a reference model, and guarantees the boundedness of the tracking error within an a priori specified compact domain, in the presence of bounded uncertainties. The linear part of the controller results from the solution of an optimization problem where specifications are expressed as linear matrix inequality constraints. The linear controller is then augmented with a general adaptive NN that compensates for the uncertainties. The only requirement for the NN is that its output must be confined within pre-specified saturation limits. Toward this end a specific NN output confinement algorithm is proposed in this paper. The main advantages of the proposed approach are that requirements in terms of worst-case performance can be easily defined during the design phase, and that the design of the adaptation mechanism is largely independent from the synthesis of the linear controller
Design of a Neural Network Adaptive Controllervia a Constrained Invariant Ellipsoids Technique
FRAVOLINI, Mario Luca;
2011
Abstract
In safety critical applications, control architectures based on adaptive neural networks (NNs) must satisfy strict design specifications. This paper presents a practical approach for designing a mixed linear/adaptive model reference controller that recovers the performance of a reference model, and guarantees the boundedness of the tracking error within an a priori specified compact domain, in the presence of bounded uncertainties. The linear part of the controller results from the solution of an optimization problem where specifications are expressed as linear matrix inequality constraints. The linear controller is then augmented with a general adaptive NN that compensates for the uncertainties. The only requirement for the NN is that its output must be confined within pre-specified saturation limits. Toward this end a specific NN output confinement algorithm is proposed in this paper. The main advantages of the proposed approach are that requirements in terms of worst-case performance can be easily defined during the design phase, and that the design of the adaptation mechanism is largely independent from the synthesis of the linear controllerI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.