In this paper we present a micromachined Thermal Conductivity Detector (TCD), based on the Ultra Low Power (ULP) technology. The device has been electrically characterized with different Helium gas flows, via a microfluidic experimental setup. Extraction of global thermo-electric parameters, exploited for the development of an electro-thermal Spice model, has been performed directly from the experimental measurements and from 3-D electro-thermal FEM simulations of the device. The resulting Spice model agrees very well with the measurements, with a maximum error less than 0.22%.
Measurements, FEM Simulation and Spice Modeling of a Thermal Conductivity Detector
RASTRELLO, FABIO;PLACIDI, Pisana;SCORZONI, Andrea;
2011
Abstract
In this paper we present a micromachined Thermal Conductivity Detector (TCD), based on the Ultra Low Power (ULP) technology. The device has been electrically characterized with different Helium gas flows, via a microfluidic experimental setup. Extraction of global thermo-electric parameters, exploited for the development of an electro-thermal Spice model, has been performed directly from the experimental measurements and from 3-D electro-thermal FEM simulations of the device. The resulting Spice model agrees very well with the measurements, with a maximum error less than 0.22%.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.