We show that, in the gapless Kondo regime, a single local quench at one end of a Kondo spin chain induces a fast and long-lived oscillatory dynamics. This quickly establishes a high-quality entanglement between the spins at the opposite ends of the chain. This entanglement is mediated by the Kondo cloud, attains a constant high value independent of the length for large chains, and shows thermal robustness. In contrast, when the Kondo cloud is absent, e.g., in the gapped dimer regime, only finite-size end to end effects can create some entanglement on a much longer time scale for rather short chains. By decoupling one end of the chain during the dynamics, one can distinguish between this end-end effect which vanishes, and the global Kondo cloud mediated entanglement, which persists. This quench approach paves the way to detect the elusive Kondo cloud through the entanglement between two individual spins. Our results show that non-perturbative cooperative phenomena from condensed matter may be exploited for quantum information.

Kondo cloud Mediated Long Range Entanglement After Local Quench in the Spin Chain Kondo Model.

SODANO, Pasquale;
2010

Abstract

We show that, in the gapless Kondo regime, a single local quench at one end of a Kondo spin chain induces a fast and long-lived oscillatory dynamics. This quickly establishes a high-quality entanglement between the spins at the opposite ends of the chain. This entanglement is mediated by the Kondo cloud, attains a constant high value independent of the length for large chains, and shows thermal robustness. In contrast, when the Kondo cloud is absent, e.g., in the gapped dimer regime, only finite-size end to end effects can create some entanglement on a much longer time scale for rather short chains. By decoupling one end of the chain during the dynamics, one can distinguish between this end-end effect which vanishes, and the global Kondo cloud mediated entanglement, which persists. This quench approach paves the way to detect the elusive Kondo cloud through the entanglement between two individual spins. Our results show that non-perturbative cooperative phenomena from condensed matter may be exploited for quantum information.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11391/36058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact