We observed Förster resonance energy transfer (FRET) with a covalently linked donor-acceptor pair D-A consisting of two naphthalene groups acting as the donors and a benzofurazan group acting as the acceptor and adsorbed onto Ag or Au nanoisland films. The use of metal nanoisland films, which caused a strong enhancement of the Raman signal, permitted description of the adsorption mechanism onto the two metals. The intense fluorescence response of molecular adsorbates and the different behavior of the antenna on Ag and Au nanoislands are partly explained in terms of the radiating plasmon model

Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films

FOGGI, Paolo
2009

Abstract

We observed Förster resonance energy transfer (FRET) with a covalently linked donor-acceptor pair D-A consisting of two naphthalene groups acting as the donors and a benzofurazan group acting as the acceptor and adsorbed onto Ag or Au nanoisland films. The use of metal nanoisland films, which caused a strong enhancement of the Raman signal, permitted description of the adsorption mechanism onto the two metals. The intense fluorescence response of molecular adsorbates and the different behavior of the antenna on Ag and Au nanoislands are partly explained in terms of the radiating plasmon model
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/41196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact