We establish the existence of an unbounded sequence of solutions for a class of quasilinear elliptic equations involving the anisotropic (p_1(x),...,p_n(x))-Laplace operator, on a bounded domain with smooth boundary. We work on the anisotropic variable exponent Sobolev spaces and our main tool is the symmetric mountain-pass theorem of Ambrosetti and Rabinowitz.

Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent

PUCCI, Patrizia;
2011

Abstract

We establish the existence of an unbounded sequence of solutions for a class of quasilinear elliptic equations involving the anisotropic (p_1(x),...,p_n(x))-Laplace operator, on a bounded domain with smooth boundary. We work on the anisotropic variable exponent Sobolev spaces and our main tool is the symmetric mountain-pass theorem of Ambrosetti and Rabinowitz.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11391/42288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 31
social impact