Multiple organ dysfunction syndrome (MODS) is a systemic inflammatory event that can result in organ damage, failure, and high risk of mortality. The aim of this study was to evaluate the possible role of glucocorticoid-induced TNFR-related (GITR) on zymosan-induced MODS. Mice were allocated into one GITR knockout (GITR-KO) and two GITR wild-type (GITR-WT) experimental groups. All the animals were treated with zymosan (500 mg/kg, suspended in saline solution, i.p.), and animals of one GITR-WT group received GITR-Fc (6.25 μg/mouse; 3 h after zymosan injection) by mini-osmotic pump. Moreover, three control groups were performed (one GITR-KO and two GITR-WT experimental groups), administering saline instead of zymosan and treating one of the GITR-WT group with GITR-Fc (6.25 μg/mouse; 3 h after saline injection) by mini-osmotic pump. A number of inflammatory parameters such as edema formation, histological damage, adhesion molecules expression, neutrophil infiltration, proinflammatory cytokines, nitrotyrosine, and iNOS production are significantly reduced in GITR-KO as compared with GITR-WT mice as well as in GITR-WT mice treated with GITR-Fc. We here show that GITR plays a role in the modulation of experimental MODS. In particular, we show that genetic inhibition of GITR expression, in GITR-KO mice, or administration of soluble GITR-Fc receptor in GITR-WT mice, reduces inflammation, organ tissue damage, and mortality. Results, while confirming the proinflammatory role of GITR, extend our observations indicating that GITR plays a role in zymosan-induced inflammation and MODS.
GITR gene deletion and GITR-FC soluble protein administration inhibit multiple organ failure induced by zymosan.
NOCENTINI, Giuseppe;RONCHETTI, Simona;RICCARDI, LUISA;BRUSCOLI, STEFANO;RICCARDI, Carlo;
2011
Abstract
Multiple organ dysfunction syndrome (MODS) is a systemic inflammatory event that can result in organ damage, failure, and high risk of mortality. The aim of this study was to evaluate the possible role of glucocorticoid-induced TNFR-related (GITR) on zymosan-induced MODS. Mice were allocated into one GITR knockout (GITR-KO) and two GITR wild-type (GITR-WT) experimental groups. All the animals were treated with zymosan (500 mg/kg, suspended in saline solution, i.p.), and animals of one GITR-WT group received GITR-Fc (6.25 μg/mouse; 3 h after zymosan injection) by mini-osmotic pump. Moreover, three control groups were performed (one GITR-KO and two GITR-WT experimental groups), administering saline instead of zymosan and treating one of the GITR-WT group with GITR-Fc (6.25 μg/mouse; 3 h after saline injection) by mini-osmotic pump. A number of inflammatory parameters such as edema formation, histological damage, adhesion molecules expression, neutrophil infiltration, proinflammatory cytokines, nitrotyrosine, and iNOS production are significantly reduced in GITR-KO as compared with GITR-WT mice as well as in GITR-WT mice treated with GITR-Fc. We here show that GITR plays a role in the modulation of experimental MODS. In particular, we show that genetic inhibition of GITR expression, in GITR-KO mice, or administration of soluble GITR-Fc receptor in GITR-WT mice, reduces inflammation, organ tissue damage, and mortality. Results, while confirming the proinflammatory role of GITR, extend our observations indicating that GITR plays a role in zymosan-induced inflammation and MODS.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.