Recently, the feasibility of using support vector machines (SVMs) for multiuser detection in code division multiple access (CDMA) systems has been investigated. Previous results show that SVMs perform well with short training sequences but suffer from two drawbacks that are highly undesirable in real-time applications: the run-time complexity and the block-based learning. To deal with these problems, here we propose a sample-by-sample adaptive algorithm for CDMA systems based on incremental SVMs, incorporating an active learning strategy aimed to reduce the complexity of both the training phase and the final classifier.

SVM-based CDMA receiver with incremental active learning

RICCI, ELISA;RUGINI, LUCA;PERFETTI, Renzo
2006

Abstract

Recently, the feasibility of using support vector machines (SVMs) for multiuser detection in code division multiple access (CDMA) systems has been investigated. Previous results show that SVMs perform well with short training sequences but suffer from two drawbacks that are highly undesirable in real-time applications: the run-time complexity and the block-based learning. To deal with these problems, here we propose a sample-by-sample adaptive algorithm for CDMA systems based on incremental SVMs, incorporating an active learning strategy aimed to reduce the complexity of both the training phase and the final classifier.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/714311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact