Spin waves propagating in a bicomponent magnonic crystal consisting of a two-dimensional array of alternated NiFe and Co nanodots have been investigated. The frequency dispersion of collective modes, measured by Brillouin light scattering, is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. It is shown that the modes which are active in Brillouin experiment are characterized by the simplest modal profiles within the NiFe dots. For such excitations, the Co dots act as mediators of dipole coupling between the NiFe dots.
Collective spin waves in a bicomponent two-dimensional Magnonic Crystal
GUBBIOTTI, Gianluca;TACCHI, Silvia;MADAMI, MARCO;CARLOTTI, Giovanni;
2012
Abstract
Spin waves propagating in a bicomponent magnonic crystal consisting of a two-dimensional array of alternated NiFe and Co nanodots have been investigated. The frequency dispersion of collective modes, measured by Brillouin light scattering, is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. It is shown that the modes which are active in Brillouin experiment are characterized by the simplest modal profiles within the NiFe dots. For such excitations, the Co dots act as mediators of dipole coupling between the NiFe dots.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.