Major, trace element and Sr isotopic compositions have been determined on 21 lava samples from Vico volcano, Roman Province, Central Italy. The rocks investigated range from leucite tephritic phonolites to leucite phonolites and trachytes. Trace element compositions are characterized by high enrichments of incompatible elements which display strong variations in rocks with a similar degree of evolution. Well-defined linear trends are observed between pairs of incompatible trace elements such as Th-Ta, Th-La, Th-Hf. A decrease of Large Ion Lithophile (LIL) elements abundance contemporaneously with the formation of a large central caldera is one of the most prominent characteristics of trace element distribution. Sr isotope ratios range from 0.71147 to 0.71037 in the pre-caldera lavas and decreases to values of 0.70974–0.70910 in the lavas erupted after the caldera collapse. Theoretical modelling of geochemical and Sr isotopic variations indicates that, while fractional crystallization was an important evolutionary process, AFC and mixing also played key roles during the evolution of Vico volcano. AFC appears to have dominated during the early stages of the volcanic history when evolved trachytes with the highest Sr isotope ratios were erupted. Mixing processes are particularly evident in volcanites emplaced during the late stages of Vico evolution. According to the model proposed, the evolution of potassic magmas emplaced in a shallow-level reservoir was dominated by crystal fractionation plus wall rock assimilation and mixing with ascending fresh mafic magma. This process generated a range of geochemical and isotopic compositions in the mafic magmas which evolved by both AFC and simple crystal liquid fractionation, producing evolved trachytes and phonolites with variable trace element and Sr isotopic compositions.

Major, trace element and Sr isotopic composition of lavas from Vico volcano (Central Italy) and their evolution in an open system

PECCERILLO, Angelo;POLI, Giampiero;
1988

Abstract

Major, trace element and Sr isotopic compositions have been determined on 21 lava samples from Vico volcano, Roman Province, Central Italy. The rocks investigated range from leucite tephritic phonolites to leucite phonolites and trachytes. Trace element compositions are characterized by high enrichments of incompatible elements which display strong variations in rocks with a similar degree of evolution. Well-defined linear trends are observed between pairs of incompatible trace elements such as Th-Ta, Th-La, Th-Hf. A decrease of Large Ion Lithophile (LIL) elements abundance contemporaneously with the formation of a large central caldera is one of the most prominent characteristics of trace element distribution. Sr isotope ratios range from 0.71147 to 0.71037 in the pre-caldera lavas and decreases to values of 0.70974–0.70910 in the lavas erupted after the caldera collapse. Theoretical modelling of geochemical and Sr isotopic variations indicates that, while fractional crystallization was an important evolutionary process, AFC and mixing also played key roles during the evolution of Vico volcano. AFC appears to have dominated during the early stages of the volcanic history when evolved trachytes with the highest Sr isotope ratios were erupted. Mixing processes are particularly evident in volcanites emplaced during the late stages of Vico evolution. According to the model proposed, the evolution of potassic magmas emplaced in a shallow-level reservoir was dominated by crystal fractionation plus wall rock assimilation and mixing with ascending fresh mafic magma. This process generated a range of geochemical and isotopic compositions in the mafic magmas which evolved by both AFC and simple crystal liquid fractionation, producing evolved trachytes and phonolites with variable trace element and Sr isotopic compositions.
1988
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/911336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact