We study a class of Functional Differential Equations whose hereditary structure is induced by a Volterra type property. This abstract formulation allows us to unify many hereditary structures already introduced in literature. For the Cauchy problem, existence, uniqueness and continuous dependence theorems are given. Moreover, existence and continuous dependence results for extremal solutions are proved.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Type Volterra property in Functional Differential Equations. Study of the Cauchy problem and extremal solutions |
Autori: | |
Data di pubblicazione: | 1993 |
Rivista: | |
Abstract: | We study a class of Functional Differential Equations whose hereditary structure is induced by a ...Volterra type property. This abstract formulation allows us to unify many hereditary structures already introduced in literature. For the Cauchy problem, existence, uniqueness and continuous dependence theorems are given. Moreover, existence and continuous dependence results for extremal solutions are proved. |
Handle: | http://hdl.handle.net/11391/919909 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.