Given a subgroup N of an additive group G, a (G,N,k,1) difference family (DF) is a set $\cal D$ of k-subsets of G such that $(d −d' | d, d' \in {\cal D}, d \neq d' , D \in {\cal D}) = G − N$. Generalizing a construction by Genma, Jimbo, and Mishima [4], we give a new condition for realizing a $(C_k \oplus G, C_k \times\{0\},k,1)-DF starting from a (G, {0}, k, 1)-DF. Among the consequences, new cyclic Steiner 2-designs are obtained.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | From a (G,k,1) to a (C_k+G,k,1) difference family |
Autori: | |
Data di pubblicazione: | 1997 |
Rivista: | |
Abstract: | Given a subgroup N of an additive group G, a (G,N,k,1) difference family (DF) is a set $\cal D$ o...f k-subsets of G such that $(d −d' | d, d' \in {\cal D}, d \neq d' , D \in {\cal D}) = G − N$. Generalizing a construction by Genma, Jimbo, and Mishima [4], we give a new condition for realizing a $(C_k \oplus G, C_k \times\{0\},k,1)-DF starting from a (G, {0}, k, 1)-DF. Among the consequences, new cyclic Steiner 2-designs are obtained. |
Handle: | http://hdl.handle.net/11391/920052 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.