In [Discrete Math. 174, (1997) 247-259] an infinite class of STSs(2^h-1) was found with the upper chromatic number $\overline{\chi}=h$. We prove that in this class, for all STSs(2^h-1) with h <10, the lower chromatic number coincides with the upper chromatic number, i.e. $\chi=\overline{\chi}=h$; moreover, there exists an infinite sub-class of STSs with $\chi=\overline{\chi}=h$ for any value of h.
Lower and upper chromatic numbers for BSTSs(2^h-1)
BURATTI, Marco;
2001
Abstract
In [Discrete Math. 174, (1997) 247-259] an infinite class of STSs(2^h-1) was found with the upper chromatic number $\overline{\chi}=h$. We prove that in this class, for all STSs(2^h-1) with h <10, the lower chromatic number coincides with the upper chromatic number, i.e. $\chi=\overline{\chi}=h$; moreover, there exists an infinite sub-class of STSs with $\chi=\overline{\chi}=h$ for any value of h.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.