Genetic algorithms (GAs) are stochastic search algorithms inspired by the basic principles of biological evolution and natural selection. GAs simulate the evolution of living organisms, where the fittest individuals dominate over the weaker ones, by mimicking the biological mechanisms of evolution, such as selection, crossover and mutation. GAs have been successfully applied to solve optimization problems, both for continuous (whether differentiable or not) and discrete functions. This paper describes the R package GA, a collection of general purpose functions that provide a flexible set of tools for applying a wide range of genetic algorithm methods. Several examples are discussed, ranging from mathematical functions in one and two dimensions known to be hard to optimize with standard derivative-based methods, to some selected statistical problems which require the optimization of user defined objective functions.

GA: A Package for Genetic Algorithms in R

SCRUCCA, Luca
2013

Abstract

Genetic algorithms (GAs) are stochastic search algorithms inspired by the basic principles of biological evolution and natural selection. GAs simulate the evolution of living organisms, where the fittest individuals dominate over the weaker ones, by mimicking the biological mechanisms of evolution, such as selection, crossover and mutation. GAs have been successfully applied to solve optimization problems, both for continuous (whether differentiable or not) and discrete functions. This paper describes the R package GA, a collection of general purpose functions that provide a flexible set of tools for applying a wide range of genetic algorithm methods. Several examples are discussed, ranging from mathematical functions in one and two dimensions known to be hard to optimize with standard derivative-based methods, to some selected statistical problems which require the optimization of user defined objective functions.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/920713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 582
  • ???jsp.display-item.citation.isi??? 539
social impact