The interferometric gravitational wave detectors represent the ultimate evolution of the classical Michelson interferometer. In order to measure the signal produced by the passage of a gravitational wave, they aim to reach unprecedent sensitivities in measuring the relative displacements of the mirrors. One of them, the 3-km-long Virgo gravitational wave antenna, which will be particularly sensitive in the low-frequency range (10-100 Hz), is presently in its commissioning phase. In this paper the various techniques developed in order to reach its target extreme performance are outlined. (C) 2006 Elsevier Ltd. All rights reserved.
The Virgo interferometric gravitational antenna
GAMMAITONI, Luca;VOCCA, Helios;
2007
Abstract
The interferometric gravitational wave detectors represent the ultimate evolution of the classical Michelson interferometer. In order to measure the signal produced by the passage of a gravitational wave, they aim to reach unprecedent sensitivities in measuring the relative displacements of the mirrors. One of them, the 3-km-long Virgo gravitational wave antenna, which will be particularly sensitive in the low-frequency range (10-100 Hz), is presently in its commissioning phase. In this paper the various techniques developed in order to reach its target extreme performance are outlined. (C) 2006 Elsevier Ltd. All rights reserved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.