We apply the results of our previous paper [Degrees ...] to the projective geometry of the Chow variety which parametrizes cycles of dimension n and degree k in a projective space P^r. We show that, for k>1, its linear subvarieties are the varieties parametrizing linear systems of hypersurfaces in some P^{n+1} contained in P^r, plus a possible fixed cycle not supported in P^{n+1}, or the varieties parametrizing linear families of linear subspaces plus a fixed cycle of degree k-1. This extends the known description of linear subvarieties of a Grassmannian, in the case k=1.

Linear subvarieties of Cayley-Chow varieties

GUERRA, Lucio
1996

Abstract

We apply the results of our previous paper [Degrees ...] to the projective geometry of the Chow variety which parametrizes cycles of dimension n and degree k in a projective space P^r. We show that, for k>1, its linear subvarieties are the varieties parametrizing linear systems of hypersurfaces in some P^{n+1} contained in P^r, plus a possible fixed cycle not supported in P^{n+1}, or the varieties parametrizing linear families of linear subspaces plus a fixed cycle of degree k-1. This extends the known description of linear subvarieties of a Grassmannian, in the case k=1.
1996
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/978782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact