The farnesoid X receptor (FXR) is a bile sensor that acts in coordination with other nuclear receptors to regulate essential steps in bile acid uptake, metabolism and excretion. In addition, FXR is an ancillary receptor involved in lipid and glucose homeostasis. Steroidal and non-steroidal FXR ligands are currently available. Both groups have shown limitations in the preclinical studies regarding absorption, metabolism, specificity of target and intrinsic toxicity. FXR ligands endowed with agonistic activity are under development for the treatment of cholestatic liver diseases, including primary biliary cirrhosis and metabolic disorders linked to insulin resistance. Despite the fact that results from preclinical models are encouraging, targeting FXR holds potential for side effects (i.e., impaired cholesterol disposal and cholestasis). Thus, results from FXR gene-ablated mice and mice administered an FXR antagonist support a role for FXR antagonists or modulators (i.e., FXR agonists that selectively activate specific subsets of FXR target genes in a tissue) or co-regulator-specific manner.

Farnesoid X receptor: from medicinal chemistry to clinical applications.

FIORUCCI, Stefano;
2012

Abstract

The farnesoid X receptor (FXR) is a bile sensor that acts in coordination with other nuclear receptors to regulate essential steps in bile acid uptake, metabolism and excretion. In addition, FXR is an ancillary receptor involved in lipid and glucose homeostasis. Steroidal and non-steroidal FXR ligands are currently available. Both groups have shown limitations in the preclinical studies regarding absorption, metabolism, specificity of target and intrinsic toxicity. FXR ligands endowed with agonistic activity are under development for the treatment of cholestatic liver diseases, including primary biliary cirrhosis and metabolic disorders linked to insulin resistance. Despite the fact that results from preclinical models are encouraging, targeting FXR holds potential for side effects (i.e., impaired cholesterol disposal and cholestasis). Thus, results from FXR gene-ablated mice and mice administered an FXR antagonist support a role for FXR antagonists or modulators (i.e., FXR agonists that selectively activate specific subsets of FXR target genes in a tissue) or co-regulator-specific manner.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/982390
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact