Linking bioactive compounds to their cellular targets is a central challenge in chemical biology. Herein we report the mode of action of perthamide C, a natural cyclopeptide isolated from the marine sponge Theonella swinhoei. Through an emerging mass spectrometry-based chemical proteomics approach, Heat Shock Protein 90 and Glucose Regulated Protein 94 were identified as key targets of perthamide C and this evidence has been validated using surface plasmon resonance. The ability of perthamide C to influence heat shock protein-mediated cell apoptosis revealed that this marine metabolite could be a good candidate for the development of a lead compound with therapeutic applications based on apoptosis modulation.

Heat shock proteins as key biological targets of the marine natural cyclopeptide perthamide

MENCARELLI, Andrea;FIORUCCI, Stefano;
2012

Abstract

Linking bioactive compounds to their cellular targets is a central challenge in chemical biology. Herein we report the mode of action of perthamide C, a natural cyclopeptide isolated from the marine sponge Theonella swinhoei. Through an emerging mass spectrometry-based chemical proteomics approach, Heat Shock Protein 90 and Glucose Regulated Protein 94 were identified as key targets of perthamide C and this evidence has been validated using surface plasmon resonance. The ability of perthamide C to influence heat shock protein-mediated cell apoptosis revealed that this marine metabolite could be a good candidate for the development of a lead compound with therapeutic applications based on apoptosis modulation.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/982392
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact