Poly(ADP-ribose)polymerase-1 (PARP-1) is an enzyme belonging to the ADP-ribosyltransferase family. A large body of works has validated PARP-1 as an attractive drug target for different therapeutic areas, including cancers and ischemia. Accordingly, sampling the conformational space of the enzyme is pivotal to understand its functions and improve structure-based drug discovery approaches. In the first part of this study we apply replica exchange molecular dynamic (REMD) simulations to sample the conformational space of the catalytic domain of PARP-1 in the ligand-bound and unbound forms. In the second part, we assess how and to what extend the emerging enzyme flexibility affects the performance of docking experiments of a library of PARP-1 inhibitors. This study pinpoints a putative key role of conformational shifts of Leu324, Tyr325 and Lys242 in opening an additional binding site pocket that affects the binding of ligands to the catalytic cleft of PARP-1. Furthermore, it highlights the improvement of the enrichment factor of active ligands obtained in docking experiments when using conformations generated with REMD simulations of ligand-bound PARP-1.

Exploring the effect of PARP-1 flexibility in docking studies

CAROTTI, Andrea;NUTI, ROBERTO;CAMAIONI, Emidio;MACCHIARULO, Antonio
2013

Abstract

Poly(ADP-ribose)polymerase-1 (PARP-1) is an enzyme belonging to the ADP-ribosyltransferase family. A large body of works has validated PARP-1 as an attractive drug target for different therapeutic areas, including cancers and ischemia. Accordingly, sampling the conformational space of the enzyme is pivotal to understand its functions and improve structure-based drug discovery approaches. In the first part of this study we apply replica exchange molecular dynamic (REMD) simulations to sample the conformational space of the catalytic domain of PARP-1 in the ligand-bound and unbound forms. In the second part, we assess how and to what extend the emerging enzyme flexibility affects the performance of docking experiments of a library of PARP-1 inhibitors. This study pinpoints a putative key role of conformational shifts of Leu324, Tyr325 and Lys242 in opening an additional binding site pocket that affects the binding of ligands to the catalytic cleft of PARP-1. Furthermore, it highlights the improvement of the enrichment factor of active ligands obtained in docking experiments when using conformations generated with REMD simulations of ligand-bound PARP-1.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1147877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact