Data gathered during the Mariner10 and MESSENGER missions are collated in this paper to classify craters into four geo-chronological units constrained to the geological map produced after MESSENGER’s flybys. From the global catalogue, we classify craters, constraining them to the geological information derived from the map. We produce a size frequency distribution (SFD) finding that all crater classes show fractal behaviour: with the number of craters inversely proportional to their diameter, the exponent of the SFD (i.e., the fractal dimension of each class) shows a variation among classes. We discuss this observation as possibly being caused by endogenic and/or exogenic phenomena. Finally, we produce an interpretative scenario where, assuming a constant flux of impactors, the slope variation could be representative of rheological changes in the target materials.
Fractal Dimension of Geologically Constrained Crater Populations of Mercury
MANCINELLI, PAOLO
;PAUSELLI, Cristina;PERUGINI, Diego;FEDERICO, Costanzo
2015
Abstract
Data gathered during the Mariner10 and MESSENGER missions are collated in this paper to classify craters into four geo-chronological units constrained to the geological map produced after MESSENGER’s flybys. From the global catalogue, we classify craters, constraining them to the geological information derived from the map. We produce a size frequency distribution (SFD) finding that all crater classes show fractal behaviour: with the number of craters inversely proportional to their diameter, the exponent of the SFD (i.e., the fractal dimension of each class) shows a variation among classes. We discuss this observation as possibly being caused by endogenic and/or exogenic phenomena. Finally, we produce an interpretative scenario where, assuming a constant flux of impactors, the slope variation could be representative of rheological changes in the target materials.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.