We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit these anti-cancer drug targets and selected a set of targets that are amenable to inhibition by small molecules, antibodies and synthetic peptides. We validated the predicted drug targets by showing strong anti-proliferative effects of both synthetic peptide and small molecule inhibitors against our predicted targets.
A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
DATTI, AlessandroMethodology
;
2014
Abstract
We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit these anti-cancer drug targets and selected a set of targets that are amenable to inhibition by small molecules, antibodies and synthetic peptides. We validated the predicted drug targets by showing strong anti-proliferative effects of both synthetic peptide and small molecule inhibitors against our predicted targets.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.