Planetary subsurface sounding radar data extend the knowledge of planetary surfaces to a third dimension: the depth. The interpretation of delays of radar echoes converted into depth often requires the comparative analysis with other data, mainly topography, and radar data from different orbits can be used to investigate the spatial continuity of signals from subsurface geologic features. This scenario requires taking into account spatially referred information in three dimensions. Three dimensional objects are generally easier to understand if represented into a three dimensional space, and this representation can be improved by stereoscopic vision. Since its invention in the first half of 19th century, stereoscopy has been used in a broad range of application, including scientific visualization. The quick improvement of computer graphics and the spread of graphic rendering hardware allow to apply the basic principles of stereoscopy in the digital domain, allowing the stereoscopic projection of complex models. Specialized system for stereoscopic view of scientific data have been available in the industry, and proprietary solutions were affordable only to large research institutions. In the last decade, thanks to the GeoWall Consortium, the basics of stereoscopy have been applied for setting up stereoscopic viewers based on off-the shelf hardware products. Geowalls have been spread and are now used by several geo-science research institutes and universities. We are exploring techniques for visualizing planetary subsurface sounding radar data in three dimensions and we are developing a hardware system for rendering it in a stereoscopic vision system. Several Free Open Source Software tools and libraries are being used, as their level of interoperability is typically high and their licensing system offers the opportunity to implement quickly new functionalities to solve specific needs during the progress of the project. Visualization of planetary radar data in three dimensions represents a challenging task, and the exploration of different strategies will bring to the selection of the most appropriate ones for a meaningful extraction of information from the products of these innovative instruments.
Visualization of planetary subsurface radar sounder data in three dimensions using stereoscopy.
FRIGERI, ALESSANDRO;FEDERICO, Costanzo;PAUSELLI, Cristina;ERCOLI, MAURIZIO;
2010
Abstract
Planetary subsurface sounding radar data extend the knowledge of planetary surfaces to a third dimension: the depth. The interpretation of delays of radar echoes converted into depth often requires the comparative analysis with other data, mainly topography, and radar data from different orbits can be used to investigate the spatial continuity of signals from subsurface geologic features. This scenario requires taking into account spatially referred information in three dimensions. Three dimensional objects are generally easier to understand if represented into a three dimensional space, and this representation can be improved by stereoscopic vision. Since its invention in the first half of 19th century, stereoscopy has been used in a broad range of application, including scientific visualization. The quick improvement of computer graphics and the spread of graphic rendering hardware allow to apply the basic principles of stereoscopy in the digital domain, allowing the stereoscopic projection of complex models. Specialized system for stereoscopic view of scientific data have been available in the industry, and proprietary solutions were affordable only to large research institutions. In the last decade, thanks to the GeoWall Consortium, the basics of stereoscopy have been applied for setting up stereoscopic viewers based on off-the shelf hardware products. Geowalls have been spread and are now used by several geo-science research institutes and universities. We are exploring techniques for visualizing planetary subsurface sounding radar data in three dimensions and we are developing a hardware system for rendering it in a stereoscopic vision system. Several Free Open Source Software tools and libraries are being used, as their level of interoperability is typically high and their licensing system offers the opportunity to implement quickly new functionalities to solve specific needs during the progress of the project. Visualization of planetary radar data in three dimensions represents a challenging task, and the exploration of different strategies will bring to the selection of the most appropriate ones for a meaningful extraction of information from the products of these innovative instruments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.