Due to its function as a regulator of drug-metabolizing enzymes and transporters, pregnane X receptor (PXR) represents an important factor involved in drug metabolism. In this work, we describe the discovery of diethylstilbestrol-based PXR modulators, which were designed from marine sulfated steroids with PXR agonistic activity, solomonsterols A and B, and our recently reported bazedoxifene scaffold-derived PXR antagonists. The methylated diethylstilbestrol derivative 1 displayed potent PXR agonistic activity with an EC50 value of 10.5 μM, whereas compounds 3, 4 and 6 (IC50 for 6 = 27.4 μM) and diethylstilbestrol (2) itself (IC50 = 14.6 μM) exhibited PXR antagonistic effects in HepG2 cells. The PXR modulatory effects of the synthesized diethylstilbestrol derivatives were further confirmed by the induction of PXR-regulated CYP3A4 expression with compound 1, as well as by the inhibition of the rifaximin-promoted up-regulation of CYP3A4 expression with 2 and its derivative 6.

Diethylstilbestrol-scaffold-based pregnane X receptor modulators

D'AMORE, CLAUDIO;FIORUCCI, Stefano;
2015

Abstract

Due to its function as a regulator of drug-metabolizing enzymes and transporters, pregnane X receptor (PXR) represents an important factor involved in drug metabolism. In this work, we describe the discovery of diethylstilbestrol-based PXR modulators, which were designed from marine sulfated steroids with PXR agonistic activity, solomonsterols A and B, and our recently reported bazedoxifene scaffold-derived PXR antagonists. The methylated diethylstilbestrol derivative 1 displayed potent PXR agonistic activity with an EC50 value of 10.5 μM, whereas compounds 3, 4 and 6 (IC50 for 6 = 27.4 μM) and diethylstilbestrol (2) itself (IC50 = 14.6 μM) exhibited PXR antagonistic effects in HepG2 cells. The PXR modulatory effects of the synthesized diethylstilbestrol derivatives were further confirmed by the induction of PXR-regulated CYP3A4 expression with compound 1, as well as by the inhibition of the rifaximin-promoted up-regulation of CYP3A4 expression with 2 and its derivative 6.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1357958
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact