This paper describes the design and the realization of a low-frequency ac magnetic-field-based indoor positioning system (PS). The system operation is based on the principle of inductive coupling between wire loop antennas. Specifically, due to the characteristics of the ac artificially generated magnetic fields, the relation between the induced voltage and the distance is modeled with a linear behavior in a bilogarithmic scale when a configuration with coplanar, thus equally oriented, antennas is used. In this case, the distance between a transmitting antenna and a receiving one is estimated using measurements of the induced voltage in the latter. For a high operational range, the system makes use of resonant antennas tuned at the same nominal resonant frequency. The quality factors act as antenna gain increasing the amplitude of the induced voltage. The low-operating frequency is the key factor for improving robustness against nonline-of-sight (NLOS) conditions and environment influences with respect to other existing solutions. The realized prototype, which is implemented using off-the-shelf components, exhibits an average and maximum positioning error, respectively, lower than 0.3 and 0.9 m in an indoor environment over a large area of 15 × 12 m in NLOS conditions. Similar performance is obtained in an outdoor environment over an area of 30 × 14 m. Furthermore, the system does not require any type of synchronization between the nodes and can accommodate an arbitrary number of users without additional infrastructure.

A Positioning System Based on Low Frequency Magnetic Fields

PASKU, VALTER;DE ANGELIS, ALESSIO;DIONIGI, Marco;DE ANGELIS, GUIDO;MOSCHITTA, Antonio;CARBONE, Paolo
2016

Abstract

This paper describes the design and the realization of a low-frequency ac magnetic-field-based indoor positioning system (PS). The system operation is based on the principle of inductive coupling between wire loop antennas. Specifically, due to the characteristics of the ac artificially generated magnetic fields, the relation between the induced voltage and the distance is modeled with a linear behavior in a bilogarithmic scale when a configuration with coplanar, thus equally oriented, antennas is used. In this case, the distance between a transmitting antenna and a receiving one is estimated using measurements of the induced voltage in the latter. For a high operational range, the system makes use of resonant antennas tuned at the same nominal resonant frequency. The quality factors act as antenna gain increasing the amplitude of the induced voltage. The low-operating frequency is the key factor for improving robustness against nonline-of-sight (NLOS) conditions and environment influences with respect to other existing solutions. The realized prototype, which is implemented using off-the-shelf components, exhibits an average and maximum positioning error, respectively, lower than 0.3 and 0.9 m in an indoor environment over a large area of 15 × 12 m in NLOS conditions. Similar performance is obtained in an outdoor environment over an area of 30 × 14 m. Furthermore, the system does not require any type of synchronization between the nodes and can accommodate an arbitrary number of users without additional infrastructure.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1362718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 71
social impact