Mutations in the gene encoding the KMT2D (or MLL2) methyltransferase are highly recurrent and occur early during tumorigenesis in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the functional consequences of these mutations and their role in lymphomagenesis are unknown. Here we show that FL- and DLBCL-associated KMT2D mutations impair KMT2D enzymatic activity, leading to diminished global H3K4 methylation in germinal-center (GC) B cells and DLBCL cells. Conditional deletion of Kmt2d early during B cell development, but not after initiation of the GC reaction, results in an increase in GC B cells and enhances B cell proliferation in mice. Moreover, genetic ablation of Kmt2d in mice overexpressing Bcl2 increases the incidence of GC-derived lymphomas resembling human tumors. These findings suggest that KMT2D acts as a tumor suppressor gene whose early loss facilitates lymphomagenesis by remodeling the epigenetic landscape of the cancer precursor cells. Eradication of KMT2D-deficient cells may thus represent a rational therapeutic approach for targeting early tumorigenic events.

Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis

PASQUALUCCI, Laura
2015

Abstract

Mutations in the gene encoding the KMT2D (or MLL2) methyltransferase are highly recurrent and occur early during tumorigenesis in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the functional consequences of these mutations and their role in lymphomagenesis are unknown. Here we show that FL- and DLBCL-associated KMT2D mutations impair KMT2D enzymatic activity, leading to diminished global H3K4 methylation in germinal-center (GC) B cells and DLBCL cells. Conditional deletion of Kmt2d early during B cell development, but not after initiation of the GC reaction, results in an increase in GC B cells and enhances B cell proliferation in mice. Moreover, genetic ablation of Kmt2d in mice overexpressing Bcl2 increases the incidence of GC-derived lymphomas resembling human tumors. These findings suggest that KMT2D acts as a tumor suppressor gene whose early loss facilitates lymphomagenesis by remodeling the epigenetic landscape of the cancer precursor cells. Eradication of KMT2D-deficient cells may thus represent a rational therapeutic approach for targeting early tumorigenic events.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1364177
Citazioni
  • ???jsp.display-item.citation.pmc??? 179
  • Scopus 330
  • ???jsp.display-item.citation.isi??? 307
social impact