Ultra wideband (UWB) radio for communication has several challenges. From the physical layer perspective, a signaling technique should be optimally designed to work in synergy with the underneath hardware to achieve maximum performance. In this paper, we propose a variant of pulse position modulation (PPM) for physical layer signaling, which can achieve raw bitrate in excess of 150 Mbps on a low complexity in-house developed impulse radio UWB platform. The signaling system is optimized to maximize bitrate under practical constraints of low complexity hardware and regulatory bodies. We propose a detector and derive its theoretical performance bounds and compare the performance in simulation in terms of symbol error rates (SER). Modifications to the signaling, which can increase the range by 4 times with a slight increase in hardware complexity, is proposed. Detectors for this modification and a comparative study of the performance of the proposed UWB physical layer signaling schemes in terms of symbol error rates are discussed.

Spectral efficient IR-UWB communication design for low complexity transceivers

DE ANGELIS, ALESSIO;
2014

Abstract

Ultra wideband (UWB) radio for communication has several challenges. From the physical layer perspective, a signaling technique should be optimally designed to work in synergy with the underneath hardware to achieve maximum performance. In this paper, we propose a variant of pulse position modulation (PPM) for physical layer signaling, which can achieve raw bitrate in excess of 150 Mbps on a low complexity in-house developed impulse radio UWB platform. The signaling system is optimized to maximize bitrate under practical constraints of low complexity hardware and regulatory bodies. We propose a detector and derive its theoretical performance bounds and compare the performance in simulation in terms of symbol error rates (SER). Modifications to the signaling, which can increase the range by 4 times with a slight increase in hardware complexity, is proposed. Detectors for this modification and a comparative study of the performance of the proposed UWB physical layer signaling schemes in terms of symbol error rates are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1364913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact