A domino Friedel–Crafts/nitro-Michael reaction between 4-substituted indoles and nitroethene is presented. The reaction is catalyzed by BINOL-derived phosphoric acid catalysts, and delivers the corresponding 3,4-ring-fused indoles with very good results in terms of yields and diastereo- and enantioselectivities. The tricyclic benzo[cd]indole products bear a nitro group at the right position to serve as precursors of ergot alkaloids, as demonstrated by the formal synthesis of 6,7-secoagroclavine from one of the adducts. DFT calculations suggest that the outcome of the reaction stems from the preferential evolution of a key nitronic acid intermediate through a nucleophilic addition pathway, rather than to the expected “quenching” through protonation.
Catalytic Asymmetric Reactions of 4-Substituted Indoles with Nitroethene: A Direct Entry to Ergot Alkaloid Structures
SANTORO, STEFANO;
2015
Abstract
A domino Friedel–Crafts/nitro-Michael reaction between 4-substituted indoles and nitroethene is presented. The reaction is catalyzed by BINOL-derived phosphoric acid catalysts, and delivers the corresponding 3,4-ring-fused indoles with very good results in terms of yields and diastereo- and enantioselectivities. The tricyclic benzo[cd]indole products bear a nitro group at the right position to serve as precursors of ergot alkaloids, as demonstrated by the formal synthesis of 6,7-secoagroclavine from one of the adducts. DFT calculations suggest that the outcome of the reaction stems from the preferential evolution of a key nitronic acid intermediate through a nucleophilic addition pathway, rather than to the expected “quenching” through protonation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.