Urban Heat Island (UHI) is influenced by urban form, geometry, and the properties of surfaces. Retroreflective (RR) materials have been proposed as a countermeasure to UHI, thanks to their optical property of reflecting most of the incident solar energy back towards the same direction. In this paper, the effect of RR materials on urban districts was investigated. They were applied on building façades of urban districts with different urban forms and orientations. To this aim, an experimental model resembling urban districts with different geometries was built and RR materials on vertical surfaces were tested and compared to conventional construction materials with similar global reflectance. The trend of the instantaneous albedo was monitored during the day and a new parameter called “equivalent albedo” was used to demonstrate the effectiveness of the RR materials. The comparative analysis shows that the RR façades lead to an increase of the equivalent albedo for all of the investigated urban patterns. For a block pattern, the equivalent albedo increase is equal to 3%, while for canyon patterns it is equal to 7%. Results of energy evaluations show that the energy savings obtainable with the use of RR materials is comparable to the values of anthropogenic heat emissions in residential areas.
Experimental Analysis of the Effect of Geometry and Façade Materials on Urban District’s Equivalent Albedo
MORINI, ELENA;CASTELLANI, BEATRICE
;PRESCIUTTI, ANDREA;ANDERINI, ELISABETTA;FILIPPONI, MIRKO;NICOLINI, ANDREA;ROSSI, Federico
2017
Abstract
Urban Heat Island (UHI) is influenced by urban form, geometry, and the properties of surfaces. Retroreflective (RR) materials have been proposed as a countermeasure to UHI, thanks to their optical property of reflecting most of the incident solar energy back towards the same direction. In this paper, the effect of RR materials on urban districts was investigated. They were applied on building façades of urban districts with different urban forms and orientations. To this aim, an experimental model resembling urban districts with different geometries was built and RR materials on vertical surfaces were tested and compared to conventional construction materials with similar global reflectance. The trend of the instantaneous albedo was monitored during the day and a new parameter called “equivalent albedo” was used to demonstrate the effectiveness of the RR materials. The comparative analysis shows that the RR façades lead to an increase of the equivalent albedo for all of the investigated urban patterns. For a block pattern, the equivalent albedo increase is equal to 3%, while for canyon patterns it is equal to 7%. Results of energy evaluations show that the energy savings obtainable with the use of RR materials is comparable to the values of anthropogenic heat emissions in residential areas.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.