Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for the treatment of pain and inflammation. Although it is well known that NSAIDs can suppress bone growth, remodelling and repair, they are largely used post-operatively and post-traumatically to achieve analgesia and reduce inflammation in bone tissue. Aims: The impact of two NO-releasing, non-selective NSAIDs, NCX-4016 and HCT-3012 (NO-derivatives of Aspirin and Naproxen, respectively) on osteoblasts were evaluated and compared to the non-selective, parent chemicals and to the COX-2-selective inhibitor Celecoxib. Main methods: Using MG-63 osteoblast-like cells, we considered proliferation, the early and late stage of differentiation, and the activity of proteinases thought to be involved in osteoid degradation, a preliminary fundamental event of bone remodelling. Key findings: Unlike Aspirin, Naproxen and Celecoxib, the two NO-NSAIDs did not alter proliferation and differentiation of osteoblasts. They also reduced the activity of plasminogen activator, metalloproteinases, and cathepsin B. Similar inhibitory effects against these proteinases were recapitulated by the NO-donor sodium nitroprusside, thereby suggesting a NO-mediated mechanism. Significance: Due to a differential effect on cell proliferation and differentiation, the two NO-NSAIDs exhibit a safer impact on osteoblast metabolism compared to Celecoxib and their parent compounds. This suggests an advantageous option for these drugs in individuals with a need of COX-inhibiting treatment, in general. In addition, their capability of modulating the proteinases involved in osteoid degradation may specifically suggest an additional safer use in comorbidity conditions of inflammation or pain with bone disorders characterized by high rate of remodelling, such as high-turnover osteoporosis in post-menopausal women.

COX inhibitors and bone: A safer impact on osteoblasts by NO-releasing NSAIDs

Aisa Maria Cristina;Datti Alessandro;Orlacchio Antonio;Di Renzo Gian Carlo
2018

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for the treatment of pain and inflammation. Although it is well known that NSAIDs can suppress bone growth, remodelling and repair, they are largely used post-operatively and post-traumatically to achieve analgesia and reduce inflammation in bone tissue. Aims: The impact of two NO-releasing, non-selective NSAIDs, NCX-4016 and HCT-3012 (NO-derivatives of Aspirin and Naproxen, respectively) on osteoblasts were evaluated and compared to the non-selective, parent chemicals and to the COX-2-selective inhibitor Celecoxib. Main methods: Using MG-63 osteoblast-like cells, we considered proliferation, the early and late stage of differentiation, and the activity of proteinases thought to be involved in osteoid degradation, a preliminary fundamental event of bone remodelling. Key findings: Unlike Aspirin, Naproxen and Celecoxib, the two NO-NSAIDs did not alter proliferation and differentiation of osteoblasts. They also reduced the activity of plasminogen activator, metalloproteinases, and cathepsin B. Similar inhibitory effects against these proteinases were recapitulated by the NO-donor sodium nitroprusside, thereby suggesting a NO-mediated mechanism. Significance: Due to a differential effect on cell proliferation and differentiation, the two NO-NSAIDs exhibit a safer impact on osteoblast metabolism compared to Celecoxib and their parent compounds. This suggests an advantageous option for these drugs in individuals with a need of COX-inhibiting treatment, in general. In addition, their capability of modulating the proteinases involved in osteoid degradation may specifically suggest an additional safer use in comorbidity conditions of inflammation or pain with bone disorders characterized by high rate of remodelling, such as high-turnover osteoporosis in post-menopausal women.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1432650
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact