In this investigation, we explored for the first time the use of cross-linked sulfonated poly (ether ether ketone) (SPEEK) membranes in the fabrication of enthalpy heat exchangers. SPEEK is very sensitive to changes in relative humidity, especially when featuring high degrees of sulfonation (DS), though a poor mechanical stability may be observed in the latter case. Cross-linking is crucial in overcoming this issue, and here, we firstly employed the INCA method (ionomer counter-elastic pressure “nc” analysis) to assess the improvements in the mechanical properties. The cross-link was achieved following a simple thermal-assisted process that occurs directly on the performed membranes. After an initial screening, a degree of cross-link = 0.1 was selected as the better compromise between absorption of water vapor and mechanical properties. When implemented in the enthalpy heat exchanger system, these cross-linked SPEEK membranes enabled a high level of sensible heat exchange, as well as a remarkable variation in the mass (water vapor) transfer between the individual air flows. The performances resulted in being better than those for the system based on a benchmark commercially available perfluorinated Nafion membrane.

Stabilized SPEEK membranes with a high degree of sulfonation for enthalpy heat exchangers

Assunta Marrocchi;Giorgio Baldinelli
2018

Abstract

In this investigation, we explored for the first time the use of cross-linked sulfonated poly (ether ether ketone) (SPEEK) membranes in the fabrication of enthalpy heat exchangers. SPEEK is very sensitive to changes in relative humidity, especially when featuring high degrees of sulfonation (DS), though a poor mechanical stability may be observed in the latter case. Cross-linking is crucial in overcoming this issue, and here, we firstly employed the INCA method (ionomer counter-elastic pressure “nc” analysis) to assess the improvements in the mechanical properties. The cross-link was achieved following a simple thermal-assisted process that occurs directly on the performed membranes. After an initial screening, a degree of cross-link = 0.1 was selected as the better compromise between absorption of water vapor and mechanical properties. When implemented in the enthalpy heat exchanger system, these cross-linked SPEEK membranes enabled a high level of sensible heat exchange, as well as a remarkable variation in the mass (water vapor) transfer between the individual air flows. The performances resulted in being better than those for the system based on a benchmark commercially available perfluorinated Nafion membrane.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1438117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact