Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS - Res&Arch Institutional Research Information System - Research &Archive
On August 17, 2017, the Advanced LIGO and Advanced Virgo
gravitational-wave detectors observed a low-mass compact binary
inspiral. The initial sky localization of the source of the
gravitational-wave signal, GW170817, allowed electromagnetic
observatories to identify NGC 4993 as the host galaxy. In this work, we
improve initial estimates of the binary's properties, including
component masses, spins, and tidal parameters, using the known source
location, improved modeling, and recalibrated Virgo data. We extend the
range of gravitational-wave frequencies considered down to 23 Hz,
compared to 30 Hz in the initial analysis. We also compare results
inferred using several signal models, which are more accurate and
incorporate additional physical effects as compared to the initial
analysis. We improve the localization of the gravitational-wave source
to a 90% credible region of 16 deg(2). We find tighter constraints on
the masses, spins, and tidal parameters, and continue to find no
evidence for nonzero component spins. The component masses are inferred
to lie between 1.00 and 1.89 M-circle dot when allowing for large
component spins, and to lie between 1.16 and 1.60 M-circle dot (with a
total mass 2.73(-0.01)(+0.04) M-circle dot) when the spins are
restricted to be within the range observed in Galactic binary neutron
stars. Using a precessing model and allowing for large component spins,
we constrain the dimensionless spins of the components to be less than
0.50 for the primary and 0.61 for the secondary. Under minimal
assumptions about the nature of the compact objects, our constraints for
the tidal deformability parameter (Lambda) over tilde are (0,630) when
we allow for large component spins, and 300(-230)(+420) (using a 90%
highest posterior density interval) when restricting the magnitude of
the component spins, ruling out several equation-of-state models at the
90% credible level. Finally, with LIGO and GEO600 data, we use a
Bayesian analysis to place upper limits on the amplitude and spectral
energy density of a possible postmerger signal.
Properties of the Binary Neutron Star Merger GW170817
Abbott, B. P.;Abbott, R.;Abbott, T. D.;Acernese, F.;Ackley, K.;Adams, C.;Adams, T.;Addesso, P.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agarwal, B.;Agathos, M.;Agatsuma, K.;Aggarwal, N.;Aguiar, O. D.;Aiello, L.;Ain, A.;Ajith, P.;Allen, B.;Allen, G.;Allocca, A.;Aloy, M. A.;Altin, P. A.;Amato, A.;Ananyeva, A.;Anderson, S. B.;Anderson, W. G.;Angelova;V;Antier, S.;Appert, S.;Arai, K.;Araya, M. C.;Areeda, J. S.;Arene, M.;Arnaud, N.;Arun, K. G.;Ascenzi, S.;Ashton, G.;Ast, M.;Aston, S. M.;Astone, P.;Atallah;V;Aubin, F.;Aufmuth, P.;Aulbert, C.;AultONeal, K.;Austin, C.;Avila-Alvarez, A.;Babak, S.;Bacon, P.;Badaracco, F.;Bader, M. K. M.;Bae, S.;Baker, P. T.;Baldaccini, F.;Ballardin, G.;Ballmer, S. W.;Banagiri, S.;Barayoga, J. C.;Barclay, S. E.;Barish, B. C.;Barker, D.;Barkett, K.;Barnum, S.;Barone, F.;Barr, B.;Barsotti, L.;Barsuglia, M.;Barta, D.;Bartlett, J.;Bartos, I;Bassiri, R.;Basti, A.;Batch, J. C.;Bawaj, M.;Bayley, J. C.;Bazzan, M.;Becsy, B.;Beer, C.;Bejger, M.;Belahcene, I;Bell, A. S.;Beniwal, D.;Bensch, M.;Berger, B. K.;Bergmann, G.;Bernuzzi, S.;Bero, J. J.;Berry, C. P. L.;Bersanetti, D.;Bertolini, A.;Betzwieser, J.;Bh;are, R.;Bilenko, I. A.;Bilgili, S. A.;Billingsley, G.;Billman, C. R.;Birch, J.;Birney, R.;Birnholtz, O.;Biscans, S.;Biscoveanu, S.;Bisht, A.;Bitossi, M.;Bizouard, M. A.;Blackburn, J. K.;Blackman, J.;Blair, C. D.;Blair, D. G.;Blair, R. M.;Bloemen, S.;Bock, O.;Bode, N.;Boer, M.;Boetzel, Y.;Bogaert, G.;Bohe, A.;Bondu, F.;Bonilla, E.;Bonn;Booker, P.;Boom, B. A.;Booth, C. D.;Bork, R.;Boschi, V;Bose, S.;Bossie, K.;Bossilkov, V;Bosveld, J.;Bouffanais, Y.;Bozzi, A.;Bradaschia, C.;Brady, P. R.;Bramley, A.;Branchesi, M.;Brau, J. E.;Briant, T.;Brighenti, F.;Brillet, A.;Brinkmann, M.;Brisson, V;Brockill, P.;Brooks, A. F.;Brown, D. D.;Brunett, S.;Buchanan, C. C.;Buikema, A.;Bulik, T.;Bulten, H. J.;Buonanno, A.;Buskulic, D.;Buy, C.;Byer, R. L.;Cabero, M.;Cadonati, L.;Cagnoli, G.;Cahillane, C.;Bustillo, J. Caldron;Callister, T. A.;Calloni, E.;Camp, J. B.;Canepa, M.;Canizares, P.;Cannon, K. C.;Cao, H.;Cao, J.;Capano, C. D.;Capocasa, E.;Carbognani, F.;Caride, S.;Carney, M. F.;Carullo, G.;Diaz, J. Casanueva;Casentini, C.;Caudill, S.;Cavaglia, M.;Cavalier, F.;Cavalieri, R.;Cella, G.;Cepeda, C. B.;Cerda-Duran, P.;Cerretani, G.;Cesarini, E.;Chaibi, O.;Chamberlin, S. J.;Chan, M.;Chao, S.;Charlton, P.;Chase, E.;Chass;e-Mottin, E.;Chatterjee, D.;Chatziioannou, K.;Cheeseboro, B. D.;Chen, H. Y.;Chen, X.;Chen, Y.;Cheng, H-P;Chia, H. Y.;Chincarini, A.;Chiummo, A.;Chmiel, T.;Cho, H. S.;Cho, M.;Chow, J. H.;Christensen, N.;Chu, Q.;Chua, A. J. K.;Chua, S.;Chung, K. W.;Chung, S.;Ciani, G.;Ciobanu, A. A.;Ciolfi, R.;Cipriano, F.;Cirelli, C. E.;Cirone, A.;Clara, F.;Clark, J. A.;Clearwater, P.;Cleva, F.;Cocchieri, C.;Coccia, E.;Cohadon, P-F;Cohen, D.;Colla, A.;Collette, C. G.;Collins, C.;Cominsky, L. R.;Constancio, M.;Conti, L.;Cooper, S. J.;Corban, P.;Corbitt, T. R.;Cordero-Carrion, I;Corley, K. R.;Cornish, N.;Corsi, A.;Cortese, S.;Costa, C. A.;Cotesta, R.;Coughlin, M. W.;Coughlin, S. B.;Coulon, J-P;Countryman, S. T.;Couvares, P.;Covas, P. B.;Cowan, E. E.;Coward, D. M.;Cowart, M. J.;Coyne, D. C.;Coyne, R.;Creighton, J. D. E.;Creighton, T. D.;Cripe, J.;Crowder, S. G.;Cullen, T. J.;Cumming, A.;Cunningham, L.;Cuoco, E.;Dal Canton, T.;Dalya, G.;Danilishin, S. L.;D'Antonio, S.;Danzmann, K.;Dasgupta, A.;Da Silva Costa, C. F.;Dattilo, V;Dave, I;Davier, M.;Davis, D.;Daw, E. J.;Day, B.;DeBra, D.;Deenadayalan, M.;Degallaix, J.;De Laurentis, M.;Deleglise, S.;Del Pozzo, W.;Demos, N.;Denker, T.;Dent, T.;De Pietri, R.;Derby, J.;Dergachev, V;De Rosa, R.;De Rossi, C.;DeSalvo, R.;de Varona, O.;Dhur;har, S.;Diaz, M. C.;Dietrich, T.;Di Fiore, L.;Di Giovanni, M.;Di Girolamo, T.;Di Lieto, A.;Ding, B.;Di Pace, S.;Di Palma, I;Di Renzo, F.;Dmitriev, A.;Doctor, Z.;Dolique, V;Donovan, F.;Dooley, K. L.;Doravari, S.;Dorrington, I;Alvarez, M. Dovale;Downes, T. P.;Drago, M.;Dreissigacker, C.;Driggers, J. C.;Du, Z.;Dudi, R.;Dupej, P.;Dwyer, S. E.;Easter, P. J.;Edo, T. B.;Edwards, M. C.;Effler, A.;Eggenstein, H-B;Ehrens, P.;Eichhol, J.;Eikenberry, S. S.;Eisenmann, M.;Eisenstein, R. A.;Essick, R. C.;Estelles, H.;Estevez, D.;Etienne, Z. B.;Etzel, T.;Evans, M.;Evans, T. M.;Fafone, V;Fair, H.;Fairhurst, S.;Fan, X.;Farinon, S.;Farr, B.;Farr, W. M.;Fauchon-Jones, E. J.;Favata, M.;Fays, M.;Fee, C.;Fehrmann, H.;Feicht, J.;Fejer, M. M.;Feng, F.;Fern;ez-Galiana, A.;Ferrante, I;Ferreira, E. C.;Ferrini, F.;Fidecaro, F.;Fiori, I;Fiorucci, D.;Fishbach, M.;Fisher, R. P.;Fishner, J. M.;Fitz-Axen, M.;Flaminio, R.;Fletcher, M.;Fong, H.;Font, J. A.;Forsyth, P. W. F.;Forsyth, S. S.;Fournier, J-D;Frasca, S.;Frasconi, F.;Frei, Z.;Freise, A.;Frey, R.;Frey, V;Fritschel, P.;Frolov, V. V.;Fulda, P.;Fyffe, M.;Gabbard, H. A.;Gadre, B. U.;Gaebel, S. M.;Gair, J. R.;Gammaitoni, L.;Ganija, M. R.;Gaonkar, S. G.;Garcia, A.;Garcia-Quiros, C.;Garufi, F.;Gateley, B.;Gaudio, S.;Gaur, G.;Gayathri, V;Gemme, G.;Genin, E.;Gennai, A.;George, D.;George, J.;Gergely, L.;Germain, V;Ghonge, S.;Ghosh, Abhirup;Ghosh, Archisman;Ghosh, S.;Giacomazzo, B.;Giaime, J. A.;Giardina, K. D.;Giazotto, A.;Gill, K.;Giordano, G.;Glover, L.;Goetz, E.;Goetz, R.;Goncharov, B.;Gonzalez, G.;Castro, J. M. Gonzalez;Gopakumar, A.;Gorodetsky, M. L.;Gossan, S. E.;Gosselin, M.;Gouaty, R.;Grado, A.;Graef, C.;Granata, M.;Grant, A.;Gras, S.;Gray, C.;Greco, G.;Green, A. C.;Green, R.;Gretarsson, E. M.;Groot, P.;Grote, H.;Grunewald, S.;Gruning, P.;Guidi, G. M.;Gulati, H. K.;Guo, X.;Gupta, A.;Gupta, M. K.;Gushwa, K. E.;Gustafson, E. K.;Gustafson, R.;Halim, O.;Hall, B. R.;Hall, E. D.;Hamilton, E. Z.;Hamilton, H. F.;Hammond, G.;Haney, M.;Hanke, M. M.;Hanks, J.;Hanna, C.;Hannam, M. D.;Hannuksela, O. A.;Hanson, J.;Hardwick, T.;Harms, J.;Harry, G. M.;Harry, I. W.;Hart, M. J.;Haster, C-J;Haughian, K.;Healy, J.;Heidmann, A.;Heintze, M. C.;Heitmann, H.;Hello, P.;Hemming, G.;Hendry, M.;Heng, I. S.;Hennig, J.;Heptonstall, A. W.;Hern;ez, F. J.;Heurs, M.;Hild, S.;Hinderer, T.;Hoak, D.;Hochheim, S.;Hofman, D.;Holl;, N. A.;Holtz, K.;Holz, D. E.;Hopkins, P.;Horst, C.;Hough, J.;Houston, E. A.;Howell, E. J.;Hreibi, A.;Huerta, E. A.;Huet, D.;Hughey, B.;Hulko, M.;Husa, S.;Huttner, S. H.;Huynh-Dinh, T.;Iess, A.;Indik, N.;Ingram, C.;Inta, R.;Intini, G.;Isa, H. N.;Isac, J-M;Isi, M.;Iyer, B. R.;Izumi, K.;Jacqmin, T.;Jani, K.;Jaranowski, P.;Johnson, D. S.;Johnson, W. W.;Jones;I;Jones, R.;Jonker, R. J. G.;Ju, L.;Junker, J.;Kalaghatgi;V;Kalogera, V;Kamai, B.;K;hasamy, S.;Kang, G.;Kanner, J. B.;Kapadia, S. J.;Karki, S.;Karvinen, K. S.;Kasprzack, M.;Kastaun, W.;Katolik, M.;Katsanevas, S.;Katsavounidis, E.;Katzman, W.;Kaufer, S.;Kawabe, K.;Keerthana;V;Kefelian, F.;Keitel, D.;Kemball, A. J.;Kennedy, R.;Key, J. S.;Khalili, F. Y.;Khamesra, B.;Khan, H.;Khan, I;Khan, S.;Khan, Z.;Khazanov, E. A.;Kijbunchoo, N.;Kim, Chunglee;Kim, J. C.;Kim, K.;Kim, W.;Kim, W. S.;Kim, Y-M;King, E. J.;King, P. J.;Kinley-Hanlon, M.;Kirchhoff, R.;Kissel, J. S.;Kleybolte, L.;Klimenko, S.;Knowles, T. D.;Koch, P.;Koehlenbeck, S. M.;Koley, S.;Kondrashov, V;Kontos, A.;Korobko, M.;Korth, W. Z.;Kowalska, I;Kozak, D. B.;Kraemer, C.;Kringel, V;Krishnan, B.;Krolak, A.;Kuehn, G.;Kumar, P.;Kumar, R.;Kumar, S.;Kuo, L.;Kutynia, A.;Kwang, S.;Lackey, B. D.;Lai, K. H.;L;ry, M.;L;ry, P.;Lang, R. N.;Lange, J.;Lantz, B.;Lanza, R. K.;Lartaux-Vollard, A.;Lasky, P. D.;Laxen, M.;Lazzarini, A.;Lazzaro, C.;Leaci, P.;Leavey, S.;Lee, C. H.;Lee, H. K.;Lee, H. M.;Lee, H. W.;Lee, K.;Lehmann, J.;Lenon, A.;Leonardi, M.;Leroy, N.;Letendre, N.;Levin, Y.;Li, J.;Li, T. G. F.;Li, X.;Linker, S. D.;Littenberg, T. B.;Liu, J.;Liu, X.;Lo, R. K. L.;Lockerbie, N. A.;London, L. T.;Longo, A.;Lorenzini, M.;Loriette, V;Lorm;Losurdo, G.;Lough, J. D.;Lousto, C. O.;Lovelace, G.;Lueck, H.;Lumaca, D.;Lundgren, A. P.;Lynch, R.;Ma, Y.;Macas, R.;Macfoy, S.;Machenschalk, B.;MacInnis, M.;Macleod, D. M.;Hern;ez, I. Magana;Magana-S;oval, F.;Zertuche, L. Magana;Magee, R. M.;Majorana, E.;Maksimovic, I;Man, N.;M;ic, V;Mangano, V;Mansell, G. L.;Manske, M.;Mantovani, M.;Marchesoni, F.;Marion, F.;Marka, S.;Marka, Z.;Markakis, C.;Markosyan, A. S.;Markowitz, A.;Maros, E.;Marquina, A.;Martelli, F.;Martellini, L.;Martin, I. W.;Martin, R. M.;Martynov;V;Mason, K.;Massera, E.;Masserot, A.;Massinger, T. J.;Masso-Reid, M.;Mastrogiovanni, S.;Matas, A.;Matichard, F.;Matone, L.;Mavalvala, N.;Mazumder, N.;McCann, J. J.;McCarthy, R.;McClell;, D. E.;McCormick, S.;McCuller, L.;McGuire, S. C.;McIver, J.;McManus, D. J.;McRae, T.;McWilliams, S. T.;Meacher, D.;Meadors, G. D.;Mehmet, M.;Meidam, J.;Mejuto-Villa, E.;Melatos, A.;Mendell, G.;Mendoza-G;ara, D.;Mercer, R. A.;Mereni, L.;Merilh, E. L.;Merzougui, M.;Meshkov, S.;Messenger, C.;Messick, C.;Metzdorff, R.;Meyers, P. M.;Miao, H.;Michel, C.;Middleton, H.;Mikhailov, E. E.;Milano, L.;Miller, A. L.;Miller, A.;Miller, B. B.;Miller, J.;Millhouse, M.;Mills, J.;Milovich-Goff, M. C.;Minazzoli, O.;Minenkov, Y.;Ming, J.;Mishra, C.;Mitra, S.;Mitrofanov, V. P.;Mitselmakher, G.;Mittleman, R.;Moffa, D.;Mogushi, K.;Mohan, M.;Mohapatra, S. R. P.;Montani, M.;Moore, C. J.;Moraru, D.;Moreno, G.;Morisaki, S.;Mours, B.;Mow-Lowry, C. M.;Mueller, G.;Muir, A. W.;Mukherjee, Arunava;Mukherjee, D.;Mukherjee, S.;Mukund, N.;Mullavey, A.;Munch, J.;Muniz, E. A.;Muratore, M.;Murray, P. G.;Nagar, A.;Napier, K.;Nardecchia, I;Naticchioni, L.;Nayak, R. K.;Neilson, J.;Nelemans, G.;Nelson, T. J. N.;Nery, M.;Neunzert, A.;Nevin, L.;Newport, J. M.;Ng, K. Y.;Ng, S.;Nguyen, P.;Nguyen, T. T.;Nichols, D.;Nielsen, A. B.;Nissanke, S.;Nitz, A.;Nocera, F.;Nolting, D.;North, C.;Nuttall, L. K.;Obergaulinger, M.;Oberling, J.;O'Brien, B. D.;O'Dea, G. D.;Ogin, G. H.;Oh, J. J.;Oh, S. H.;Ohme, F.;Ohta, H.;Okada, M. A.;Oliver, M.;Oppermann, P.;Oram, Richard J.;O'Reilly, B.;Ormiston, R.;Ortega, L. F.;O'Shaughnessy, R.;Ossokine, S.;Ottaway, D. J.;Overmier, H.;Owen, B. J.;Pace, A. E.;Pagano, G.;Page, J.;Page, M. A.;Pai, A.;Pai, S. A.;Palamos, J. R.;Palashov, O.;Palomba, C.;Pal-Singh, A.;Pan, Howard;Pan, Huang-Wei;Pang, B.;Pang, P. T. H.;Pankow, C.;Pannarale, F.;Pant, B. C.;Paoletti, F.;Paoli, A.;Papa, M. A.;Parida, A.;Parker, W.;Pascucci, D.;Pasqualetti, A.;Passaquieti, R.;Passuello, D.;Patil, M.;Patricelli, B.;Pearlstone, B. L.;Pedersen, C.;Pedraza, M.;Pedur;Pekowsky, L.;Pele, A.;Penn, S.;Perez, C. J.;Perreca, A.;Perri, L. M.;Pfeiffer, H. P.;Phelps, M.;Phukon, K. S.;Piccinni, O. J.;Pichot, M.;Piergiovanni, F.;Pierro, V;Pillant, G.;Pinard, L.;Pinto, I. M.;Pirello, M.;Pitkin, M.;Poggiani, R.;Popolizio, P.;Porter, E. K.;Possenti, L.;Post, A.;Powell, J.;Prasad, J.;Pratt, J. W. W.;Pratten, G.;Predoi, V;Prestegard, T.;Principe, M.;Privitera, S.;Prodi, G. A.;Prokhorov, L. G.;Puncken, O.;Punturo, M.;Puppo, P.;Prrer, M.;Qi, H.;Quetschke, V;Quintero, E. A.;Quitzow-James, R.;Raab, F. J.;Rabeling, D. S.;Radkins, H.;Raffai, P.;Raja, S.;Rajan, C.;Rajbh;ari, B.;Rakhmanov, M.;Ramirez, K. E.;Ramos-Buades, A.;Rana, Javed;Rapagnani, P.;Raymond, V;Razzano, M.;Read, J.;Regimbau, T.;Rei, L.;Reid, S.;Reitze, D. H.;Ren, W.;Ricci, F.;Ricker, P. M.;Riemenschneider, G.;Riles, K.;Rizzo, M.;Robertson, N. A.;Robie, R.;Robinet, F.;Robson, T.;Rocchi, A.;Roll;Rollins, J. G.;Roma, V. J.;Romano, R.;Romel, C. L.;Romie, J. H.;Rosinska, D.;Ross, M. P.;Rowan, S.;Ruediger, A.;Ruggi, P.;Rutins, G.;Ryan, K.;Sachdev, S.;Sadecki, T.;Sakellariadou, M.;Salconi, L.;Saleem, M.;Salemi, F.;Samajdar, A.;Sammut, L.;Sampson, L. M.;Sanchez, E. J.;Sanchez, L. E.;Sanchis-Gual, N.;S;berg, V;S;ers, J. R.;Sarin, N.;Sassolas, B.;Sathyaprakash, B. S.;Saulson, P. R.;Sauter, O.;Savage, R. L.;Sawadsky, A.;Schale, P.;Scheel, M.;Scheuer, J.;Schmidt, P.;Schnabel, R.;Schofield, R. M. S.;Schoenbeck, A.;Schreiber, E.;Schuette, D.;Schulte, B. W.;Schutz, B. F.;Schwalbe, S. G.;Scott, J.;Scott, S. M.;Seidel, E.;Sellers, D.;Sengupta, A. S.;Sentenac, D.;Sequino, V;Sergeev, A.;Setyawati, Y.;Shaddock, D. A.;Shaffer, T. J.;Shah, A. A.;Shahriar, M. S.;Shaner, M. B.;Shao, L.;Shapiro, B.;Shawhan, P.;Shen, H.;Shoemaker, D. H.;Shoemaker, D. M.;Siellez, K.;Siemens, X.;Sieniawska, M.;Sigg, D.;Silva, A. D.;Singer, L. P.;Singh, A.;Singhal, A.;Sintes, A. M.;Slagmolen, B. J. J.;Slaven-Blair, T. J.;Smith, B.;Smith, J. R.;Smith, R. J. E.;Somala, S.;Son, E. J.;Sorazu, B.;Sorrentino, F.;Souradeep, T.;Spencer, A. P.;Srivastava, A. K.;Staats, K.;Steinke, M.;Steinlechner, J.;Steinlechner, S.;Steinmeyer, D.;Steltner, B.;Stevenson, S. P.;Stocks, D.;Stone, R.;Stops, D. J.;Strain, K. A.;Stratta, G.;Strigin, S. E.;Strunk, A.;Sturani, R.;Stuver, A. L.;Summerscales, T. Z.;Sun, L.;Sunil, S.;Suresh, J.;Sutton, P. J.;Swinkels, B. L.;Szczepanczyk, M. J.;Tacca, M.;Tait, S. C.;Talbot, C.;Talukder, D.;Tanner, D. B.;Tapai, M.;Taracchini, A.;Tasson, J. D.;Taylor, J. A.;Taylor, R.;Tewari;V;Theeg, T.;Thies, F.;Thomas, E. G.;Thomas, M.;Thomas, P.;Thorne, K. A.;Thrane, E.;Tiwari, S.;Tiwari, V;Tokmakov;V;Tol;Tonelli, M.;Tornasi, Z.;Torres-Forne, A.;Torrie;I;Toeyrae, D.;Travasso, F.;Traylor, G.;Trinastic, J.;Tringali, M. C.;Trozzo, L.;Tsang, K. W.;Tse, M.;Tso, R.;Tsuna, D.;Tsukada, L.;Tuyenbayev, D.;Ueno, K.;Ugolini, D.;Urban, A. L.;Usman, S. A.;Vahlbruch, H.;Vajente, G.;Valdes, G.;van Bakel, N.;van Beuzekom, M.;van den Br;, J. F. J.;van den Broeck, C.;v;er-Hyde, D. C.;van der Schaaf, L.;van Heijningen;V;van Veggel, A. A.;Vardaro, M.;Varma, V.;Vass, S.;Vasuth, M.;Vecchio, A.;Vedovato, G.;Veitch, J.;Veitch, P. J.;Venkateswara, K.;Venugopalan, G.;Verkindt, D.;Vetrano, F.;Vicere, A.;Viets, A. D.;Vinciguerra, S.;Vine, D. J.;Vinet, J-Y;Vitale, S.;Vo, T.;Vocca, H.;Vorvick, C.;Vyatchanin, S. P.;Wade, A. R.;Wade, L. E.;Wade, M.;Walet, R.;Walker, M.;Wallace, L.;Walsh, S.;Wang, G.;Wang, H.;Wang, J. Z.;Wang, W. H.;Wang, Y. F.;Ward, R. L.;Warner, J.;Was, M.;Watchi, J.;Weaver, B.;Wei, L-W;Weinert, M.;Weinstein, A. J.;Weiss, R.;Wellmann, F.;Wen, L.;Wessel, E. K.;Wessels, P.;Westerweck, J.;Wette, K.;Whelan, J. T.;Whiting, B. F.;Whittle, C.;Wilken, D.;Williams, D.;Williams, R. D.;Williamson, A. R.;Willis, J. L.;Willke, B.;Wimmer, M. H.;Winkler, W.;Wipf, C. C.;Wittel, H.;Woan, G.;Woehler, J.;Wofford, J. K.;Wong, W. K.;Worden, J.;Wright, J. L.;Wu, D. S.;Wysocki, D. M.;Xiao, S.;Yam, W.;Yamamoto, H.;Yancey, C. C.;Yang, L.;Yap, M. J.;Yazback, M.;Yu, Hang;Yu, Haocun;Yvert, M.;Zadrozny, A.;Zanolin, M.;Zelenova, T.;Zendri, J-P;Zevin, M.;Zhang, J.;Zhang, L.;Zhang, M.;Zhang, T.;Zhang, Y-H;Zhao, C.;Zhou, M.;Zhou, Z.;Zhu, S. J.;Zhu, X. J.;Zimmerman, A. B.;Zlochower, Y.;Zucker, M. E.;Zweizig, J.;LIGO Sci Collaboration;Virgo Collaboration
2019
Abstract
On August 17, 2017, the Advanced LIGO and Advanced Virgo
gravitational-wave detectors observed a low-mass compact binary
inspiral. The initial sky localization of the source of the
gravitational-wave signal, GW170817, allowed electromagnetic
observatories to identify NGC 4993 as the host galaxy. In this work, we
improve initial estimates of the binary's properties, including
component masses, spins, and tidal parameters, using the known source
location, improved modeling, and recalibrated Virgo data. We extend the
range of gravitational-wave frequencies considered down to 23 Hz,
compared to 30 Hz in the initial analysis. We also compare results
inferred using several signal models, which are more accurate and
incorporate additional physical effects as compared to the initial
analysis. We improve the localization of the gravitational-wave source
to a 90% credible region of 16 deg(2). We find tighter constraints on
the masses, spins, and tidal parameters, and continue to find no
evidence for nonzero component spins. The component masses are inferred
to lie between 1.00 and 1.89 M-circle dot when allowing for large
component spins, and to lie between 1.16 and 1.60 M-circle dot (with a
total mass 2.73(-0.01)(+0.04) M-circle dot) when the spins are
restricted to be within the range observed in Galactic binary neutron
stars. Using a precessing model and allowing for large component spins,
we constrain the dimensionless spins of the components to be less than
0.50 for the primary and 0.61 for the secondary. Under minimal
assumptions about the nature of the compact objects, our constraints for
the tidal deformability parameter (Lambda) over tilde are (0,630) when
we allow for large component spins, and 300(-230)(+420) (using a 90%
highest posterior density interval) when restricting the magnitude of
the component spins, ruling out several equation-of-state models at the
90% credible level. Finally, with LIGO and GEO600 data, we use a
Bayesian analysis to place upper limits on the amplitude and spectral
energy density of a possible postmerger signal.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1452259
Citazioni
ND
1045
932
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.