AMS-02 is a large acceptance cosmic ray detector which has been installed on the International Space Station (ISS) in May 2011, where it is collecting cosmic rays up to TeV energies. The search for Dark Matter indirect signatures in the rare components of the cosmic ray fluxes is among the main objectives of the experiment. AMS-02 is providing cosmic electrons and positrons data with an unprecedented precision. This is achieved by means to the excellent hadron/electron separation power obtained combining the independent measurements from the Transition Radiation Detector, electromagnetic Calorimeter and Tracker detectors. In this contribution we will detail the analysis techniques used to distinguish electrons from the hadronic background and show the in-flight performances of these detectors relevant for the electron/positron measurements.
Electron/proton separation and analysis techniques used in the AMS-02 (e++e-) flux measurement
Graziani M.
2016
Abstract
AMS-02 is a large acceptance cosmic ray detector which has been installed on the International Space Station (ISS) in May 2011, where it is collecting cosmic rays up to TeV energies. The search for Dark Matter indirect signatures in the rare components of the cosmic ray fluxes is among the main objectives of the experiment. AMS-02 is providing cosmic electrons and positrons data with an unprecedented precision. This is achieved by means to the excellent hadron/electron separation power obtained combining the independent measurements from the Transition Radiation Detector, electromagnetic Calorimeter and Tracker detectors. In this contribution we will detail the analysis techniques used to distinguish electrons from the hadronic background and show the in-flight performances of these detectors relevant for the electron/positron measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.