This review compares the effects of different n-3 polyunsaturated fatty acid (PUFA) sources on biological activity, physiological/reproductive endpoints, and health implications with a special emphasis on a rabbit case study. Linoleic acid (LA) and α-linolenic acid (ALA) are members of two classes of PUFAs, namely the n-6 and n-3 series, which are required for normal human health. Both are considered precursors of a cascade of molecules (eicosanoids), which take part in many biological processes (inflammation, vasoconstriction/vasodilation, thromboregulation, etc.). However, their biological functions are opposite and are mainly related to the form (precursor or long-chain products) in which they were administered and to the enzyme-substrate preference. ALA is widely present in common vegetable oils and foods, marine algae, and natural herbs, whereas its long-chain PUFA derivatives are available mainly in fish and animal product origins. Recent studies have shown that the accumulation of n-3 PUFAs seems mostly to be tissue-dependent and acts in a tissue-selective manner. Furthermore, dietary n-3 PUFAs widely affect the lipid oxidation susceptibility of all tissues. In conclusion, sustainable sources of n-3 PUFAs are limited and exert a different effect about (1) the form in which they are administered, precursor or derivatives; (2) their antioxidant protections; and (3) the purpose to be achieved (health improvement, physiological and reproductive traits, metabolic pathways, etc.).

n-3 PUFA sources (precursor/products): A review of current knowledge on rabbit

Mattioli S.;Castellini C.
2019

Abstract

This review compares the effects of different n-3 polyunsaturated fatty acid (PUFA) sources on biological activity, physiological/reproductive endpoints, and health implications with a special emphasis on a rabbit case study. Linoleic acid (LA) and α-linolenic acid (ALA) are members of two classes of PUFAs, namely the n-6 and n-3 series, which are required for normal human health. Both are considered precursors of a cascade of molecules (eicosanoids), which take part in many biological processes (inflammation, vasoconstriction/vasodilation, thromboregulation, etc.). However, their biological functions are opposite and are mainly related to the form (precursor or long-chain products) in which they were administered and to the enzyme-substrate preference. ALA is widely present in common vegetable oils and foods, marine algae, and natural herbs, whereas its long-chain PUFA derivatives are available mainly in fish and animal product origins. Recent studies have shown that the accumulation of n-3 PUFAs seems mostly to be tissue-dependent and acts in a tissue-selective manner. Furthermore, dietary n-3 PUFAs widely affect the lipid oxidation susceptibility of all tissues. In conclusion, sustainable sources of n-3 PUFAs are limited and exert a different effect about (1) the form in which they are administered, precursor or derivatives; (2) their antioxidant protections; and (3) the purpose to be achieved (health improvement, physiological and reproductive traits, metabolic pathways, etc.).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1458764
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact