The i-REXFO LIFE project designs an innovative business model with the objective of reducing significantly the amount of landfilled food waste. Given the availability of supermarket food waste in the Umbria region (Italy), the logistics is optimized using a Vehicle Routing Problem Solver, mass and energy balances of the biogas plant are partly calculated and partly measured from a real biogas plant. The data obtained from food waste transport and anaerobic co-digestion process are used as input for LCA analysis. The aim of the methodology is to assess the environmental and economic benefit of the substitution of energy crops (like corn silage) with food waste in anaerobic digestion. Two approaches are adopted: consequential LCA and attributional LCA. Only one impact category is taken into account: climate change. This decision has been taken to focus on two decision making criteria (economic feasibility and GHG emissions reduction). The results show that a reduction of 42% in the carbon footprint of the electricity produced from the biogas plant can be obtained by substituting about 9900 t of corn silage with 6600 t of food waste. Through the combined use of economic analysis and consequential LCA it has been possible to identify an optimized scenario in which: food waste produced from food industries is collected and used to produce energy in Expired Food Energy chains (EFE), while the food obtained from supermarkets is used to promote charity initiatives in actions aiming at the Reduction of Expired Food waste (REF).
LCA analysis of food waste co-digestion
Bartocci P.;Zampilli M.;Liberti F.;Pistolesi V.;Massoli S.;Bidini G.;Fantozzi F.
2020
Abstract
The i-REXFO LIFE project designs an innovative business model with the objective of reducing significantly the amount of landfilled food waste. Given the availability of supermarket food waste in the Umbria region (Italy), the logistics is optimized using a Vehicle Routing Problem Solver, mass and energy balances of the biogas plant are partly calculated and partly measured from a real biogas plant. The data obtained from food waste transport and anaerobic co-digestion process are used as input for LCA analysis. The aim of the methodology is to assess the environmental and economic benefit of the substitution of energy crops (like corn silage) with food waste in anaerobic digestion. Two approaches are adopted: consequential LCA and attributional LCA. Only one impact category is taken into account: climate change. This decision has been taken to focus on two decision making criteria (economic feasibility and GHG emissions reduction). The results show that a reduction of 42% in the carbon footprint of the electricity produced from the biogas plant can be obtained by substituting about 9900 t of corn silage with 6600 t of food waste. Through the combined use of economic analysis and consequential LCA it has been possible to identify an optimized scenario in which: food waste produced from food industries is collected and used to produce energy in Expired Food Energy chains (EFE), while the food obtained from supermarkets is used to promote charity initiatives in actions aiming at the Reduction of Expired Food waste (REF).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.