The pre-incubation of digestate and recycling of microbes inside a continuously stirred tank reactor (CSTR) are eective ways to optimize the anaerobic digestion process and improve the performance of biogas and methane production, also in existing biogas plants. In this study, a digestate incubation system using a nutrient mix to boost the activity of microbes was coupled to a CSTR to boost biogas and methane production. This system has been tested both on a lab scale and on an industrial scale. On a pilot scale, the system achieved an increase of +16.47 v% in biogas production with respect to the conventional anaerobic digestion process, and an increase of +2 v% in methane content (from 65.94 v% to 67.84 v%). On an industrial scale, the use of this incubation reactor with a capacity of 1 m3 has led to an increase in methane yield of 12 v%. This system allows to maintain the syntrophic relationship between acid-producing bacteria and methanogens and contemporary push the development of methanogens. Moreover, it is an economic system to be integrated into an existing biogas plant given the small volume and the simplicity of the incubation reactor.

An incubation system to enhance biogas and methane production: A case study of an existing biogas plant in Umbria, Italy

Liberti F.;Pistolesi V.;Bartocci P.;Massoli S.;Zampilli M.;Fantozzi F.
2019

Abstract

The pre-incubation of digestate and recycling of microbes inside a continuously stirred tank reactor (CSTR) are eective ways to optimize the anaerobic digestion process and improve the performance of biogas and methane production, also in existing biogas plants. In this study, a digestate incubation system using a nutrient mix to boost the activity of microbes was coupled to a CSTR to boost biogas and methane production. This system has been tested both on a lab scale and on an industrial scale. On a pilot scale, the system achieved an increase of +16.47 v% in biogas production with respect to the conventional anaerobic digestion process, and an increase of +2 v% in methane content (from 65.94 v% to 67.84 v%). On an industrial scale, the use of this incubation reactor with a capacity of 1 m3 has led to an increase in methane yield of 12 v%. This system allows to maintain the syntrophic relationship between acid-producing bacteria and methanogens and contemporary push the development of methanogens. Moreover, it is an economic system to be integrated into an existing biogas plant given the small volume and the simplicity of the incubation reactor.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1459727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact