Metal halide perovskites have become a popular material system for fabricating photovoltaics and various optoelectronic devices. However, long-term reliability must be assured. Instabilities are manifested as light-induced ion migration and segregation, which can lead to material degradation. Discordant reports have shown a beneficial role of ion migration under illumination, leading to defect healing. By combining ab initio simulations with photoluminescence measurements under controlled conditions, we demonstrate that photo-instabilities are related to light-induced formation and annihilation of defects acting as carrier trap states. We show that these phenomena coexist and compete. In particular, long-living carrier traps related to halide defects trigger photoinduced material transformations, driving both processes. Defect formation can be controlled by blocking under-coordinated surface sites, which act as a defect reservoir. By use of a passivation strategy we are thus able to stabilize the perovskite layer, leading to improved optoelectronic material quality and enhanced photostability in solar cells.

Controlling competing photochemical reactions stabilizes perovskite solar cells

Mosconi E.;Perini C. A. R.;De Angelis F.
;
2019

Abstract

Metal halide perovskites have become a popular material system for fabricating photovoltaics and various optoelectronic devices. However, long-term reliability must be assured. Instabilities are manifested as light-induced ion migration and segregation, which can lead to material degradation. Discordant reports have shown a beneficial role of ion migration under illumination, leading to defect healing. By combining ab initio simulations with photoluminescence measurements under controlled conditions, we demonstrate that photo-instabilities are related to light-induced formation and annihilation of defects acting as carrier trap states. We show that these phenomena coexist and compete. In particular, long-living carrier traps related to halide defects trigger photoinduced material transformations, driving both processes. Defect formation can be controlled by blocking under-coordinated surface sites, which act as a defect reservoir. By use of a passivation strategy we are thus able to stabilize the perovskite layer, leading to improved optoelectronic material quality and enhanced photostability in solar cells.
2019
File in questo prodotto:
File Dimensione Formato  
2019_Controllingcompeting_POSTPRINT.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia di allegato: Post-print
Licenza: Creative commons
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1459924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 275
  • ???jsp.display-item.citation.isi??? 272
social impact