The lateral diffusion of lipids and of small molecules inside a membrane is strictly related to the arrangement of acyl chains and to their mobility. In this study, we use FTIR and time resolved 2D-IR spectroscopic techniques to characterize the structure and dynamics of the hydrophobic region of palmitoyl-oleylphosphatidylcholine/cholesterol vesicles dispersed in water/dimethylsulfoxide solutions. By means of a non-polar probe, hexacarbonyl tungsten, we monitor the distribution of free volumes inside the bilayer and the conformational dynamics of hydrophobic tails in relation to the different compositions of the membrane or the different compositions of the solvent. Despite the important structural changes induced by the presence of DMSO in the solvating medium, the picosecond dynamics of the membrane is preserved under the different conditions.
Free volume and dynamics in a lipid bilayer
Gironi B.;Paolantoni M.;Morresi A.;Sassi P.
2019
Abstract
The lateral diffusion of lipids and of small molecules inside a membrane is strictly related to the arrangement of acyl chains and to their mobility. In this study, we use FTIR and time resolved 2D-IR spectroscopic techniques to characterize the structure and dynamics of the hydrophobic region of palmitoyl-oleylphosphatidylcholine/cholesterol vesicles dispersed in water/dimethylsulfoxide solutions. By means of a non-polar probe, hexacarbonyl tungsten, we monitor the distribution of free volumes inside the bilayer and the conformational dynamics of hydrophobic tails in relation to the different compositions of the membrane or the different compositions of the solvent. Despite the important structural changes induced by the presence of DMSO in the solvating medium, the picosecond dynamics of the membrane is preserved under the different conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.