Oxoverdazyl (Vz) radical units were covalently linked to the naphthalenediimide (NDI) chromophore to study the effect of the radical on the photophysical properties, especially the radical enhanced intersystem crossing (REISC), which is a promising approach to develop heavy-atom-free triplet photosensitizers. Rigid phenyl or ethynylphenyl linkers between the two moieties were used, thus REISC and formation of doublet (D1, total spin quantum number S=1/2) and quartet states (Q1, S=3/2) are anticipated. The photophysical properties of the dyads were studied with steady-state and femtosecond/nanosecond transient absorption (TA) spectroscopies and DFT computations. Femtosecond transient absorption spectra show a fast electron transfer (<150 fs), and ISC (ca. 1.4–1.85 ps) is induced by charge recombination (CR, in toluene). Nanosecond transient absorption spectra demonstrated a biexponential decay of the triplet state of the NDI moiety. The fast component (lifetime: 50 ns; population ratio: 80 %) is assigned to the D1→D0 decay, and the slow decay component (2.0 μs; 20 %) to the Q1→D0 ISC. DFT computations indicated ferromagnetic interactions between the radical and chromophore (J=0.07–0.13 eV). Reversible formation of the radical anion of the NDI moiety by photoreduction of the radical-NDI dyads in the presence of sacrificial electron donor triethanolamine (TEOA) is achieved. This work is useful for design of new triplet photosensitizers based on the REISC effect.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Intersystem Crossing in Naphthalenediimide–Oxoverdazyl Dyads: Synthesis and Study of the Photophysical Properties |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Abstract: | Oxoverdazyl (Vz) radical units were covalently linked to the naphthalenediimide (NDI) chromophore... to study the effect of the radical on the photophysical properties, especially the radical enhanced intersystem crossing (REISC), which is a promising approach to develop heavy-atom-free triplet photosensitizers. Rigid phenyl or ethynylphenyl linkers between the two moieties were used, thus REISC and formation of doublet (D1, total spin quantum number S=1/2) and quartet states (Q1, S=3/2) are anticipated. The photophysical properties of the dyads were studied with steady-state and femtosecond/nanosecond transient absorption (TA) spectroscopies and DFT computations. Femtosecond transient absorption spectra show a fast electron transfer (<150 fs), and ISC (ca. 1.4–1.85 ps) is induced by charge recombination (CR, in toluene). Nanosecond transient absorption spectra demonstrated a biexponential decay of the triplet state of the NDI moiety. The fast component (lifetime: 50 ns; population ratio: 80 %) is assigned to the D1→D0 decay, and the slow decay component (2.0 μs; 20 %) to the Q1→D0 ISC. DFT computations indicated ferromagnetic interactions between the radical and chromophore (J=0.07–0.13 eV). Reversible formation of the radical anion of the NDI moiety by photoreduction of the radical-NDI dyads in the presence of sacrificial electron donor triethanolamine (TEOA) is achieved. This work is useful for design of new triplet photosensitizers based on the REISC effect. |
Handle: | http://hdl.handle.net/11391/1462311 |
Appare nelle tipologie: | 1.1 Articolo in rivista |